Construction of estimates of spectral densities with a given accuracy over intersecting intervals of observations

Natalia V. Semenchuk
{"title":"Construction of estimates of spectral densities with a given accuracy over intersecting intervals of observations","authors":"Natalia V. Semenchuk","doi":"10.33581/2520-6508-2019-2-34-39","DOIUrl":null,"url":null,"abstract":"The article proposes a new method for determining the number of splitting intervals and the number of observations in them when building estimates of the spectral densities of stationary random processes with a given accuracy over intersecting observation intervals based on asymptotic results, obtained for the first moment of convergence rate under the assumption that the spectral density satisfies the Lipschitz condition. Two cases are considered: with a single and arbitrary data taper. As a result, an algorithm is proposed for constructing estimates for intersecting intervals of observations with a given accuracy. This algorithm was tested on model examples for random AR(4) processes, using data taper of Riesz, Bochner, Parzen. The proposed method will be useful to the researcher in analyzing data in the form of stationary random processes using non­parametric methods of spectral analysis in an automated mode.","PeriodicalId":36323,"journal":{"name":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-6508-2019-2-34-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The article proposes a new method for determining the number of splitting intervals and the number of observations in them when building estimates of the spectral densities of stationary random processes with a given accuracy over intersecting observation intervals based on asymptotic results, obtained for the first moment of convergence rate under the assumption that the spectral density satisfies the Lipschitz condition. Two cases are considered: with a single and arbitrary data taper. As a result, an algorithm is proposed for constructing estimates for intersecting intervals of observations with a given accuracy. This algorithm was tested on model examples for random AR(4) processes, using data taper of Riesz, Bochner, Parzen. The proposed method will be useful to the researcher in analyzing data in the form of stationary random processes using non­parametric methods of spectral analysis in an automated mode.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在观测的相交区间内以给定精度构造谱密度估计值
本文在假设谱密度满足Lipschitz条件下,根据收敛速度一阶矩的渐近结果,在给定精度的相交观测区间上对平稳随机过程的谱密度进行估计时,提出了一种确定分裂区间数和其中观测数的新方法。考虑了两种情况:单一和任意数据锥度。在此基础上,提出了一种对给定精度的观测值相交区间进行估计的算法。使用Riesz, Bochner, Parzen的数据锥度对随机AR(4)过程的模型实例进行了测试。所提出的方法将有助于研究人员在自动化模式下使用非参数谱分析方法分析平稳随机过程形式的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
21
审稿时长
16 weeks
期刊最新文献
Algorithm for solving the knapsack problem with certain properties of Pareto layers Numerical study of the relative equilibrium of a droplet with a simply connected free surface on a rotating plane On the Hosoya polynomial of the third type of the chain hex-derived network Algebraic equations and polynomials over the ring of p-complex numbers On the theory of operator interpolation in spaces of rectangular matrixes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1