{"title":"Systems engineering of microphysiometry","authors":"Joachim Wiest","doi":"10.1016/j.ooc.2022.100016","DOIUrl":null,"url":null,"abstract":"<div><p>The discipline of microphysiometry emerged at the end of the 1980s and has been progressing towards today's organs on chips and microphysiological systems approaches. The presented work reviews the development of cellular model from cellular monolayers toward 3D multi-cellular tissue constructs, along with the maturation of sensor principles and technologies. A modular classification into cellular models, biochip, climate control and fluidic system, and control & data acquisition is introduced. The experimental conditions and aspects of data processing are discussed and reproducibility issues such as the use of chemically defined cell culture medium are addressed. A brief review of applications and an outlook on current challenges in the field conclude the review paper.</p></div>","PeriodicalId":74371,"journal":{"name":"Organs-on-a-chip","volume":"4 ","pages":"Article 100016"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666102022000027/pdfft?md5=ede4aaf52c005a159174cbe9604372ab&pid=1-s2.0-S2666102022000027-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organs-on-a-chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666102022000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The discipline of microphysiometry emerged at the end of the 1980s and has been progressing towards today's organs on chips and microphysiological systems approaches. The presented work reviews the development of cellular model from cellular monolayers toward 3D multi-cellular tissue constructs, along with the maturation of sensor principles and technologies. A modular classification into cellular models, biochip, climate control and fluidic system, and control & data acquisition is introduced. The experimental conditions and aspects of data processing are discussed and reproducibility issues such as the use of chemically defined cell culture medium are addressed. A brief review of applications and an outlook on current challenges in the field conclude the review paper.