{"title":"Continuous latent state preintegration for inertial-aided systems","authors":"Cedric Le Gentil, Teresa Vidal-Calleja","doi":"10.1177/02783649231199537","DOIUrl":null,"url":null,"abstract":"Traditionally, the pose and velocity prediction of a system at time t2 given inertial measurements from a 6-DoF IMU depends on the knowledge of the system’s state at time t1. It involves a series of integration and double integration that can be computationally expensive if performed regularly, in particular in the context of inertial-aided optimisation-based state estimation. The concept of preintegration consists of creating pseudo-measurements that are independent of the system’s initial conditions (pose and velocity at t1) in order to predict the system’s state at t2. These pseudo-measurements, so-called preintegrated measurements, were originally computed numerically using the integration rectangle rule. This article presents a novel method to perform continuous preintegration using Gaussian processes (GPs) to model the system’s dynamics focusing on high accuracy. It represents the preintegrated measurement’s derivatives in a continuous latent state that is learnt/optimised according to asynchronous IMU gyroscope and accelerometer measurements. The GP models allow for analytical integration and double integration of the latent state to generate accurate preintegrated measurements called unified Gaussian preintegrated measurements (UGPMs). We show through extensive quantitative experiments that the proposed UGPMs outperform the standard preintegration method by an order of magnitude. Additionally, we demonstrate that the UGPMs can be integrated into off-the-shelf multi-modal estimation frameworks with ease based on lidar-inertial, RGBD-inertial, and visual-inertial real-world experiments.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":" ","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649231199537","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Traditionally, the pose and velocity prediction of a system at time t2 given inertial measurements from a 6-DoF IMU depends on the knowledge of the system’s state at time t1. It involves a series of integration and double integration that can be computationally expensive if performed regularly, in particular in the context of inertial-aided optimisation-based state estimation. The concept of preintegration consists of creating pseudo-measurements that are independent of the system’s initial conditions (pose and velocity at t1) in order to predict the system’s state at t2. These pseudo-measurements, so-called preintegrated measurements, were originally computed numerically using the integration rectangle rule. This article presents a novel method to perform continuous preintegration using Gaussian processes (GPs) to model the system’s dynamics focusing on high accuracy. It represents the preintegrated measurement’s derivatives in a continuous latent state that is learnt/optimised according to asynchronous IMU gyroscope and accelerometer measurements. The GP models allow for analytical integration and double integration of the latent state to generate accurate preintegrated measurements called unified Gaussian preintegrated measurements (UGPMs). We show through extensive quantitative experiments that the proposed UGPMs outperform the standard preintegration method by an order of magnitude. Additionally, we demonstrate that the UGPMs can be integrated into off-the-shelf multi-modal estimation frameworks with ease based on lidar-inertial, RGBD-inertial, and visual-inertial real-world experiments.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.