Canonical Workflow for Experimental Research

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Intelligence Pub Date : 2022-04-01 DOI:10.1162/dint_a_00123
Dirk Betz, Claudia Biniossek, Christophe Blanchi, Felix Henninger, T. Lauer, P. Wieder, P. Wittenburg, M. Zünkeler
{"title":"Canonical Workflow for Experimental Research","authors":"Dirk Betz, Claudia Biniossek, Christophe Blanchi, Felix Henninger, T. Lauer, P. Wieder, P. Wittenburg, M. Zünkeler","doi":"10.1162/dint_a_00123","DOIUrl":null,"url":null,"abstract":"Abstract The overall expectation of introducing Canonical Workflow for Experimental Research and FAIR digital objects (FDOs) can be summarised as reducing the gap between workflow technology and research practices to make experimental work more efficient and improve FAIRness without adding administrative load on the researchers. In this document, we will describe, with the help of an example, how CWFR could work in detail and improve research procedures. We have chosen the example of “experiments with human subjects” which stretches from planning an experiment to storing the collected data in a repository. While we focus on experiments with human subjects, we are convinced that CWFR can be applied to many other data generation processes based on experiments. The main challenge is to identify repeating patterns in existing research practices that can be abstracted to create CWFR. In this document, we will include detailed examples from different disciplines to demonstrate that CWFR can be implemented without violating specific disciplinary or methodological requirements. We do not claim to be comprehensive in all aspects, since these examples are meant to prove the concept of CWFR.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"4 1","pages":"155-172"},"PeriodicalIF":1.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00123","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The overall expectation of introducing Canonical Workflow for Experimental Research and FAIR digital objects (FDOs) can be summarised as reducing the gap between workflow technology and research practices to make experimental work more efficient and improve FAIRness without adding administrative load on the researchers. In this document, we will describe, with the help of an example, how CWFR could work in detail and improve research procedures. We have chosen the example of “experiments with human subjects” which stretches from planning an experiment to storing the collected data in a repository. While we focus on experiments with human subjects, we are convinced that CWFR can be applied to many other data generation processes based on experiments. The main challenge is to identify repeating patterns in existing research practices that can be abstracted to create CWFR. In this document, we will include detailed examples from different disciplines to demonstrate that CWFR can be implemented without violating specific disciplinary or methodological requirements. We do not claim to be comprehensive in all aspects, since these examples are meant to prove the concept of CWFR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
规范的实验研究工作流程
引入规范实验研究工作流和公平数字对象(fdo)的总体期望可以概括为减少工作流技术与研究实践之间的差距,从而提高实验工作的效率和公平性,同时不增加研究人员的管理负担。在本文中,我们将借助一个示例详细描述CWFR如何工作并改进研究过程。我们选择了“人类实验”的例子,从计划实验到将收集到的数据存储在存储库中。虽然我们专注于人类受试者的实验,但我们相信CWFR可以应用于基于实验的许多其他数据生成过程。主要的挑战是识别现有研究实践中的重复模式,这些模式可以被抽象为创建CWFR。在本文档中,我们将包括来自不同学科的详细示例,以证明CWFR可以在不违反特定学科或方法要求的情况下实现。我们并不声称在所有方面都是全面的,因为这些例子是为了证明CWFR的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
期刊最新文献
The Limitations and Ethical Considerations of ChatGPT Rule Mining Trends from 1987 to 2022: A Bibliometric Analysis and Visualization Classification and quantification of timestamp data quality issues and its impact on data quality outcome BIKAS: Bio-Inspired Knowledge Acquisition and Simulacrum—A Knowledge Database to Support Multifunctional Design Concept Generation Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1