Generación de datos de cambio de coberturas vegetales en la sabana de Bogotá mediante el uso de series temporales con imágenes Landsat e imágenes sintéticas MODIS-Landsat entre los años 2007 y 2013

IF 0.4 Q4 REMOTE SENSING Revista de Teledeteccion Pub Date : 2019-12-23 DOI:10.4995/raet.2019.12280
M. A. Zaraza-Aguilera, L. M. Manrique-Chacón
{"title":"Generación de datos de cambio de coberturas vegetales en la sabana de Bogotá mediante el uso de series temporales con imágenes Landsat e imágenes sintéticas MODIS-Landsat entre los años 2007 y 2013","authors":"M. A. Zaraza-Aguilera, L. M. Manrique-Chacón","doi":"10.4995/raet.2019.12280","DOIUrl":null,"url":null,"abstract":"Currently, new tools have been implemented that merge high-resolution temporal and spatial images for detection of change land cover. With the purpose of evaluate this type of techniques we generated a time series with Landsat satellite imagery and a time series with simulated images Landsat-MODIS, with the purpose of determining which of the two methods provides the best results in the change quantification in the Sabana of Bogota between 2007 and 2013. The processing consists of (i) Time Series with images Landsat trough BFAST, (ii) getting synthetic images through the ESTARFM algorithm; (iii) time series through BFAST with the use of simulated images. In the time series process, the series incorporating synthetic images and images corrected by the gaps generated the best accuracy indexes (global accuracy: 88.16% y Kappa: 76.52%) with respect to the series that incorporated only the images Landsat (global accuracy: 83% y Kappa: 65.18%); it indicates that densification of time series allow to get the best results in the quantification of changes and dynamics of land cover. The methodology applied represents an advance about generation of synthetic images and monitoring and detection of changes in land cover through time series. This is one of the first studies realized in the country that includes this type of process.","PeriodicalId":43626,"journal":{"name":"Revista de Teledeteccion","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Teledeteccion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/raet.2019.12280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 5

Abstract

Currently, new tools have been implemented that merge high-resolution temporal and spatial images for detection of change land cover. With the purpose of evaluate this type of techniques we generated a time series with Landsat satellite imagery and a time series with simulated images Landsat-MODIS, with the purpose of determining which of the two methods provides the best results in the change quantification in the Sabana of Bogota between 2007 and 2013. The processing consists of (i) Time Series with images Landsat trough BFAST, (ii) getting synthetic images through the ESTARFM algorithm; (iii) time series through BFAST with the use of simulated images. In the time series process, the series incorporating synthetic images and images corrected by the gaps generated the best accuracy indexes (global accuracy: 88.16% y Kappa: 76.52%) with respect to the series that incorporated only the images Landsat (global accuracy: 83% y Kappa: 65.18%); it indicates that densification of time series allow to get the best results in the quantification of changes and dynamics of land cover. The methodology applied represents an advance about generation of synthetic images and monitoring and detection of changes in land cover through time series. This is one of the first studies realized in the country that includes this type of process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用2007年至2013年带有陆地卫星图像和MODIS-Landsat合成图像的时间序列生成波哥大大草原植被覆盖变化数据
目前,已经实施了新的工具,可以合并高分辨率的时空图像来检测土地覆盖的变化。为了评估这类技术,我们用Landsat卫星图像生成了一个时间序列,用Landsat- modis模拟图像生成了一个时间序列,目的是确定哪两种方法在2007年至2013年波哥大Sabana的变化量化方面提供了最好的结果。处理过程包括:(i)通过BFAST获取Landsat图像的时间序列,(ii)通过ESTARFM算法获取合成图像;(iii)使用模拟图像通过BFAST进行时间序列分析。在时间序列过程中,合成图像和间隙校正图像的序列相对于仅包含Landsat图像的序列(全球精度:83% y Kappa: 65.18%)产生了最好的精度指标(全球精度:88.16% y Kappa: 76.52%);结果表明,时间序列的密实化可以获得量化土地覆盖变化和动态的最佳结果。所采用的方法代表了通过时间序列生成合成图像和监测和检测土地覆盖变化方面的进步。这是国内最早实现的包括这种过程的研究之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista de Teledeteccion
Revista de Teledeteccion REMOTE SENSING-
CiteScore
1.80
自引率
14.30%
发文量
11
审稿时长
10 weeks
期刊最新文献
Clasificación de uso y cobertura del suelo a través de algoritmos de aprendizaje automático: revisión bibliográfica Mapeo semiautomático de áreas quemadas en Chimborazo-Ecuador utilizando medias compuestas de dNBR con umbrales ajustados Análisis espacio-temporal de florecimientos algales nocivos en un lago-cráter tropical usando datos MODIS (2003-2020) Estimación de biomasa y carbono con herramientas de teledetección en bosques secos tropicales del Tolima, Colombia Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1