Putting MARS into space. Non‐linearities and spatial effects in hedonic models

IF 2.3 3区 经济学 Q2 ECONOMICS Papers in Regional Science Pub Date : 2023-08-01 DOI:10.1111/pirs.12738
Fernando López , Konstatin Kholodilin
{"title":"Putting MARS into space. Non‐linearities and spatial effects in hedonic models","authors":"Fernando López ,&nbsp;Konstatin Kholodilin","doi":"10.1111/pirs.12738","DOIUrl":null,"url":null,"abstract":"<div><div>Multivariate Adaptive Regression Spline (MARS) is a simple and powerful non‐parametric machine learning algorithm that automatizes the selection of non‐linear terms in regression models. In this study, we propose using MARS in a spatial regression framework to account for potential non‐linearities and spatial effects in spatial regression models. Using a relatively large data set of 17,000 dwellings in St. Petersburg (Russia), we examine how this algorithm works. The empirical evidence shows that most explanatory variables in the spatial regression model—including the spatial lag of the dependent variable—have a non‐linear impact on the asking prices of dwellings.</div></div>","PeriodicalId":51458,"journal":{"name":"Papers in Regional Science","volume":"102 4","pages":"Pages 871-897"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Regional Science","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1056819023026659","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate Adaptive Regression Spline (MARS) is a simple and powerful non‐parametric machine learning algorithm that automatizes the selection of non‐linear terms in regression models. In this study, we propose using MARS in a spatial regression framework to account for potential non‐linearities and spatial effects in spatial regression models. Using a relatively large data set of 17,000 dwellings in St. Petersburg (Russia), we examine how this algorithm works. The empirical evidence shows that most explanatory variables in the spatial regression model—including the spatial lag of the dependent variable—have a non‐linear impact on the asking prices of dwellings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
把火星送上太空。享乐模型中的非线性和空间效应
多元自适应样条回归(MARS)是一种简单而强大的非参数机器学习算法,可以自动选择回归模型中的非线性项。在这项研究中,我们建议在空间回归框架中使用MARS来解释空间回归模型中潜在的非线性和空间效应。使用圣彼得堡(俄罗斯)的17,000个住宅的相对较大的数据集,我们研究了该算法是如何工作的。实证结果表明,空间回归模型中的大多数解释变量(包括因变量的空间滞后)对住宅要价具有非线性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
4.80%
发文量
58
期刊介绍: Regional Science is the official journal of the Regional Science Association International. It encourages high quality scholarship on a broad range of topics in the field of regional science. These topics include, but are not limited to, behavioral modeling of location, transportation, and migration decisions, land use and urban development, interindustry analysis, environmental and ecological analysis, resource management, urban and regional policy analysis, geographical information systems, and spatial statistics. The journal publishes papers that make a new contribution to the theory, methods and models related to urban and regional (or spatial) matters.
期刊最新文献
Migration and local innovation: Evidence from fine-grained data from OECD countries Multidimensional measures of quality of life: A comparison of methods using U.S. county-level data Club convergence in innovation activity — Evidence from the US Navigating change: Residential relocation, commuting behaviours, and built environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1