Parker Wengryn, Karina da Costa Silveira, Connor Oborn, Carrie-Lynn Soltys, Alexander Beke, Inara Chacon-Fonseca, Nadirah Damseh, Marco Quesada Rodriguez, Ramses Badilla-Porras, Peter Kannu
{"title":"Functional Characterization of Novel Lunatic Fringe Variants in Spondylocostal Dysostosis Type-III with Scoliosis","authors":"Parker Wengryn, Karina da Costa Silveira, Connor Oborn, Carrie-Lynn Soltys, Alexander Beke, Inara Chacon-Fonseca, Nadirah Damseh, Marco Quesada Rodriguez, Ramses Badilla-Porras, Peter Kannu","doi":"10.1155/2023/5989733","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Scoliosis affects over four million Americans, with most cases having an idiopathic cause. Pathogenic variants in the <i>LUNATIC FRINGE</i> (<i>LFNG</i>) gene can cause spondylocostal dysostosis type-III (SCD3), which is a rare skeletal dysplasia characterized by the absence, fusion, or partial development of vertebrae and ribs. Acute restrictive lung disease and scoliosis may also be present in some cases. The variability in symptoms suggests that there may be other underlying pathological mechanisms that are yet to be discovered. We conducted an analysis of two novel <i>LFNG</i> variants, c.766G>A (p.G256S) and c.521G>A (p.R174H), that were observed in a patient with SCD3 phenotype and scoliosis. Characterizing these variants can help us better understand the relationship between genotype and phenotype. We assessed both variants for impaired glycosyltransferase activity, subcellular mislocalization, and aberrant pre-proprotein processing. Our results indicate that the p.G256S variant is enzymatically nonfunctional, while the p.R174H variant is functionally less effective. Both variants were correctly localized and processed. Our findings suggest that the hypomorphic variant (p.R174H) may have partially improved the patient’s stature, as evidenced by a lower arm span-to-height ratio, increased height, and more vertebrae. However, this variant did not appear to have any effect on the severity of vertebral malformations, including scoliosis. Further research is necessary to determine the extent to which variations in LFNG activity affect the presentation of SCD3.</p>\n </div>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"2023 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/5989733","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/5989733","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Scoliosis affects over four million Americans, with most cases having an idiopathic cause. Pathogenic variants in the LUNATIC FRINGE (LFNG) gene can cause spondylocostal dysostosis type-III (SCD3), which is a rare skeletal dysplasia characterized by the absence, fusion, or partial development of vertebrae and ribs. Acute restrictive lung disease and scoliosis may also be present in some cases. The variability in symptoms suggests that there may be other underlying pathological mechanisms that are yet to be discovered. We conducted an analysis of two novel LFNG variants, c.766G>A (p.G256S) and c.521G>A (p.R174H), that were observed in a patient with SCD3 phenotype and scoliosis. Characterizing these variants can help us better understand the relationship between genotype and phenotype. We assessed both variants for impaired glycosyltransferase activity, subcellular mislocalization, and aberrant pre-proprotein processing. Our results indicate that the p.G256S variant is enzymatically nonfunctional, while the p.R174H variant is functionally less effective. Both variants were correctly localized and processed. Our findings suggest that the hypomorphic variant (p.R174H) may have partially improved the patient’s stature, as evidenced by a lower arm span-to-height ratio, increased height, and more vertebrae. However, this variant did not appear to have any effect on the severity of vertebral malformations, including scoliosis. Further research is necessary to determine the extent to which variations in LFNG activity affect the presentation of SCD3.
期刊介绍:
Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.