Nonfungible Tokens as a Blockchain Solution to Ethical Challenges for the Secondary Use of Biospecimens: Viewpoint.

Marielle S Gross, Amelia J Hood, Robert C Miller
{"title":"Nonfungible Tokens as a Blockchain Solution to Ethical Challenges for the Secondary Use of Biospecimens: Viewpoint.","authors":"Marielle S Gross, Amelia J Hood, Robert C Miller","doi":"10.2196/29905","DOIUrl":null,"url":null,"abstract":"<p><p>Henrietta Lacks' deidentified tissue became HeLa cells (the paradigmatic learning health platform). In this article, we discuss separating research on Ms Lacks' tissue from obligations to promote respect, beneficence, and justice for her as a patient. This case illuminates ethical challenges for the secondary use of biospecimens, which persist in contemporary learning health systems. Deidentification and broad consent seek to maximize the benefits of learning from care by minimizing burdens on patients, but these strategies are insufficient for privacy, transparency, and engagement. The resulting supply chain for human cellular and tissue-based products may therefore recapitulate the harms experienced by the Lacks family. We introduce the potential for blockchain technology to build unprecedented transparency, engagement, and accountability into learning health system architecture without requiring deidentification. The ability of nonfungible tokens to maintain the provenance of inherently unique digital assets may optimize utility, value, and respect for patients who contribute tissue and other clinical data for research. We consider the potential benefits and survey major technical, ethical, socioeconomic, and legal challenges for the successful implementation of the proposed solutions. The potential for nonfungible tokens to promote efficiency, effectiveness, and justice in learning health systems demands further exploration.</p>","PeriodicalId":73552,"journal":{"name":"JMIR bioinformatics and biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR bioinformatics and biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/29905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Henrietta Lacks' deidentified tissue became HeLa cells (the paradigmatic learning health platform). In this article, we discuss separating research on Ms Lacks' tissue from obligations to promote respect, beneficence, and justice for her as a patient. This case illuminates ethical challenges for the secondary use of biospecimens, which persist in contemporary learning health systems. Deidentification and broad consent seek to maximize the benefits of learning from care by minimizing burdens on patients, but these strategies are insufficient for privacy, transparency, and engagement. The resulting supply chain for human cellular and tissue-based products may therefore recapitulate the harms experienced by the Lacks family. We introduce the potential for blockchain technology to build unprecedented transparency, engagement, and accountability into learning health system architecture without requiring deidentification. The ability of nonfungible tokens to maintain the provenance of inherently unique digital assets may optimize utility, value, and respect for patients who contribute tissue and other clinical data for research. We consider the potential benefits and survey major technical, ethical, socioeconomic, and legal challenges for the successful implementation of the proposed solutions. The potential for nonfungible tokens to promote efficiency, effectiveness, and justice in learning health systems demands further exploration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不可替代代币:区块链解决生物标本二次使用的伦理挑战(预印本)
亨丽埃塔-拉克斯(Henrietta Lacks)的身份已被确认的组织变成了 HeLa 细胞(学习健康平台的典范)。在这篇文章中,我们讨论了将对拉克斯女士组织的研究与促进对她作为病人的尊重、惠益和公正的义务分离开来的问题。这一案例揭示了生物样本二次利用所面临的伦理挑战,这些挑战在当代学习型医疗体系中依然存在。去标识化和广泛同意旨在通过最大限度地减少患者负担来最大限度地提高护理学习的效益,但这些策略对于隐私、透明度和参与度来说是不够的。因此,由此产生的人体细胞和组织产品供应链可能会重现拉克斯一家所经历的伤害。我们介绍了区块链技术在学习型医疗系统架构中建立前所未有的透明度、参与度和问责制的潜力,而不需要去身份化。不可篡改的代币能够保持固有的独特数字资产的出处,这可能会优化为研究提供组织和其他临床数据的患者的效用、价值和尊重。我们考虑了潜在的益处,并调查了成功实施拟议解决方案所面临的主要技术、伦理、社会经济和法律挑战。我们需要进一步探索不可兑换代币在促进学习型医疗系统的效率、有效性和公正性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Ethical Considerations in Human-Centered AI: Advancing Oncology Chatbots Through Large Language Models. Enhancing Suicide Risk Prediction With Polygenic Scores in Psychiatric Emergency Settings: Prospective Study. Internet-Based Abnormal Chromosomal Diagnosis During Pregnancy Using a Noninvasive Innovative Approach to Detecting Chromosomal Abnormalities in the Fetus: Scoping Review. Comparison of the Neutralization Power of Sotrovimab Against SARS-CoV-2 Variants: Development of a Rapid Computational Method. Correction: Mutations of SARS-CoV-2 Structural Proteins in the Alpha, Beta, Gamma, and Delta Variants: Bioinformatics Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1