Influence of water shortage on apple seedling growth under different radiation composition

IF 0.8 4区 生物学 Q4 PLANT SCIENCES Biologia Plantarum Pub Date : 2021-05-12 DOI:10.32615/BP.2020.086
F. A. Hamann, A. Fiebig, G. Noga
{"title":"Influence of water shortage on apple seedling growth under different radiation composition","authors":"F. A. Hamann, A. Fiebig, G. Noga","doi":"10.32615/BP.2020.086","DOIUrl":null,"url":null,"abstract":"Abiotic stresses strongly impair plant development and might impose detrimental effects particularly on seedlings. Irradiance and water deficit are relevant factors, which affect performance of young plants under controlled conditions. In our study, we investigated the influence of water shortage combined with different radiation sources - light emitting diodes (LED) and compact fluorescence lamps (CFL) - on physiological and biochemical parameters of young apple plants. Stress responses were assessed by fluorescence-based indices, while relative water, chlorophyll (Chl), and proline content served as reference parameters. The watering regime had a higher impact on biochemical indicators than the radiation sources. Lower Chl content was determined in plants grown under LED both in control and in water deficit plants. Nitrogen balance index and nitrogen balance index with red radiation excitation showed similar patterns regarding leaf Chl results in relation to the radiation source, being higher under CFL. In contrast, the flavonol index was higher in plants cultivated under LED. Stomatal conductance and maximal photochemical efficiency emphasised a radiation quality effect with higher values for CFL. In conclusion, fluorescence indices related to nitrogen status and flavonol content are promising parameters to sense physiological impairments under the given conditions. However, discrepancies compared to previous studies might be related to the different plant species, the nature of dehydration, and the measuring conditions.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/BP.2020.086","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abiotic stresses strongly impair plant development and might impose detrimental effects particularly on seedlings. Irradiance and water deficit are relevant factors, which affect performance of young plants under controlled conditions. In our study, we investigated the influence of water shortage combined with different radiation sources - light emitting diodes (LED) and compact fluorescence lamps (CFL) - on physiological and biochemical parameters of young apple plants. Stress responses were assessed by fluorescence-based indices, while relative water, chlorophyll (Chl), and proline content served as reference parameters. The watering regime had a higher impact on biochemical indicators than the radiation sources. Lower Chl content was determined in plants grown under LED both in control and in water deficit plants. Nitrogen balance index and nitrogen balance index with red radiation excitation showed similar patterns regarding leaf Chl results in relation to the radiation source, being higher under CFL. In contrast, the flavonol index was higher in plants cultivated under LED. Stomatal conductance and maximal photochemical efficiency emphasised a radiation quality effect with higher values for CFL. In conclusion, fluorescence indices related to nitrogen status and flavonol content are promising parameters to sense physiological impairments under the given conditions. However, discrepancies compared to previous studies might be related to the different plant species, the nature of dehydration, and the measuring conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同辐射成分下缺水对苹果幼苗生长的影响
非生物胁迫严重损害植物发育,并可能对幼苗产生不利影响。光照和水分亏缺是影响苗木生长发育的重要因素。本研究研究了不同光源(LED和CFL)在缺水条件下对苹果幼苗生理生化参数的影响。以相对水分、叶绿素(Chl)和脯氨酸含量为参考参数,采用荧光指标评价胁迫反应。灌水制度对生化指标的影响大于辐射源。在LED下生长的对照植株和水分亏缺植株的Chl含量均较低。与辐射源相关的叶片Chl结果中,氮平衡指数与红色辐射激发下的氮平衡指数表现出相似的规律,在CFL下更高。相比之下,在LED下栽培的植株黄酮醇指数更高。气孔导度和最大光化学效率强调了CFL较高的辐射质量效应。综上所述,在一定条件下,与氮状态和黄酮醇含量相关的荧光指标是有希望检测生理损伤的参数。然而,与以往研究相比,差异可能与不同的植物种类、脱水性质和测量条件有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biologia Plantarum
Biologia Plantarum 生物-植物科学
CiteScore
2.80
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.
期刊最新文献
Evaluating root characteristics under field conditions in perennial ryegrass for potential application in commercial breeding programmes Pod physical traits significantly implicate shattering response of pods in beans (Phaseolus vulgaris L.) Metabolites profiling of five Eucalyptus species by gas chromatography-mass spectrometry and multivariate analysis Differential biomass and nutrient accumulation in perennial ryegrass accessions under excess water treatment in field conditions during winter Optimized tetraploidization strategies in tissue culture for Lolium, Festuca, and Festulolium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1