AN EFFICIENT IDENTIFICATION OF RED BLOOD CELL EQUILIBRIUM SHAPE USING NEURAL NETWORKS

Houda Fahim, Olivier Sawadogo, N. Alaa, M. Guedda
{"title":"AN EFFICIENT IDENTIFICATION OF RED BLOOD CELL EQUILIBRIUM SHAPE USING NEURAL NETWORKS","authors":"Houda Fahim, Olivier Sawadogo, N. Alaa, M. Guedda","doi":"10.32523/2306-6172-2021-9-2-39-56","DOIUrl":null,"url":null,"abstract":"This work of applied mathematics with interfaces in bio-physics focuses on the shape identification and numerical modelisation of a single red blood cell shape. The purpose of this work is to provide a quantitative method for interpreting experimental observations of the red blood cell shape under microscopy. In this paper we give a new formulation based on classical theory of geometric shape minimization which assumes that the curvature energy with additional constraints controls the shape of the red blood cell. To minimize this energy under volume and area constraints, we propose a new hybrid algorithm which combines Particle Swarm Optimization (PSO), Gravitational Search (GSA) and Neural Network Algorithm (NNA). The results obtained using this new algorithm agree well with the experimental results given by Evans et al. (8) especially for sphered and biconcave shapes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2021-9-2-39-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work of applied mathematics with interfaces in bio-physics focuses on the shape identification and numerical modelisation of a single red blood cell shape. The purpose of this work is to provide a quantitative method for interpreting experimental observations of the red blood cell shape under microscopy. In this paper we give a new formulation based on classical theory of geometric shape minimization which assumes that the curvature energy with additional constraints controls the shape of the red blood cell. To minimize this energy under volume and area constraints, we propose a new hybrid algorithm which combines Particle Swarm Optimization (PSO), Gravitational Search (GSA) and Neural Network Algorithm (NNA). The results obtained using this new algorithm agree well with the experimental results given by Evans et al. (8) especially for sphered and biconcave shapes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
利用神经网络对红细胞平衡形态的有效识别
这项生物物理中具有界面的应用数学工作专注于单个红细胞形状的形状识别和数值建模。这项工作的目的是提供一种定量方法来解释显微镜下红细胞形状的实验观察结果。在本文中,我们基于经典的几何形状最小化理论给出了一个新的公式,该公式假设具有附加约束的曲率能量控制红细胞的形状。为了在体积和面积约束下最小化这种能量,我们提出了一种新的混合算法,该算法结合了粒子群优化(PSO)、引力搜索(GSA)和神经网络算法(NNA)。使用该新算法获得的结果与Evans等人给出的实验结果非常一致。(8)特别是对于球形和双凹面形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1