{"title":"Theoretical basis for the hypothesis of white-matter resonance as a background of spike-wave discharges","authors":"Shigeki Sadahiro","doi":"10.1016/j.phmed.2020.100031","DOIUrl":null,"url":null,"abstract":"<div><p>It remains unclear how spike-wave discharges (SWDs) in electroencephalograms (EEGs) arise, although some researchers believe that there is some focus in the deep brain and others have pointed out the importance of the interaction between the thalami and cortices. My previous work hypothesized that possible resonance in white matter may induce extremely large amplitude discharges in an EEG, which are associated with SWDs. The visual evoked potential (VEP) technique revealed a resonance phenomenon that supports this hypothesis. In this research, I theoretically reconsidered the resonance phenomenon based on the cable theory modified by considering dielectric dispersion. If both the resistive and capacitive currents in the dielectric material contribute to conduction along an axon, we can show that the current amplitude has a single maximum at a certain frequency and this amplitude depends on the geometrical ratio of capacitance to resistance. The frequency can be common for any axon in a wide white-matter area. We can infer that SWDs will arise, when the frequency generated by the thalamic reticular nucleus neurons coincides with the resonance frequency of the white matter. The resonance frequency predicted by the modified theory is close to the known frequency of the SWDs.</p></div>","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"11 ","pages":"Article 100031"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phmed.2020.100031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235245102030007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
It remains unclear how spike-wave discharges (SWDs) in electroencephalograms (EEGs) arise, although some researchers believe that there is some focus in the deep brain and others have pointed out the importance of the interaction between the thalami and cortices. My previous work hypothesized that possible resonance in white matter may induce extremely large amplitude discharges in an EEG, which are associated with SWDs. The visual evoked potential (VEP) technique revealed a resonance phenomenon that supports this hypothesis. In this research, I theoretically reconsidered the resonance phenomenon based on the cable theory modified by considering dielectric dispersion. If both the resistive and capacitive currents in the dielectric material contribute to conduction along an axon, we can show that the current amplitude has a single maximum at a certain frequency and this amplitude depends on the geometrical ratio of capacitance to resistance. The frequency can be common for any axon in a wide white-matter area. We can infer that SWDs will arise, when the frequency generated by the thalamic reticular nucleus neurons coincides with the resonance frequency of the white matter. The resonance frequency predicted by the modified theory is close to the known frequency of the SWDs.
期刊介绍:
The scope of Physics in Medicine consists of the application of theoretical and practical physics to medicine, physiology and biology. Topics covered are: Physics of Imaging Ultrasonic imaging, Optical imaging, X-ray imaging, Fluorescence Physics of Electromagnetics Neural Engineering, Signal analysis in Medicine, Electromagnetics and the nerve system, Quantum Electronics Physics of Therapy Ultrasonic therapy, Vibrational medicine, Laser Physics Physics of Materials and Mechanics Physics of impact and injuries, Physics of proteins, Metamaterials, Nanoscience and Nanotechnology, Biomedical Materials, Physics of vascular and cerebrovascular diseases, Micromechanics and Micro engineering, Microfluidics in medicine, Mechanics of the human body, Rotary molecular motors, Biological physics, Physics of bio fabrication and regenerative medicine Physics of Instrumentation Engineering of instruments, Physical effects of the application of instruments, Measurement Science and Technology, Physics of micro-labs and bioanalytical sensor devices, Optical instrumentation, Ultrasound instruments Physics of Hearing and Seeing Acoustics and hearing, Physics of hearing aids, Optics and vision, Physics of vision aids Physics of Space Medicine Space physiology, Space medicine related Physics.