Optimization of Drying Process for Production Red Ginger Granulated Palm Sugar Using Response Surface Methodology

P. A. Handayani, Idama Kusuma Dewi, Ady Prasetyo
{"title":"Optimization of Drying Process for Production Red Ginger Granulated Palm Sugar Using Response Surface Methodology","authors":"P. A. Handayani, Idama Kusuma Dewi, Ady Prasetyo","doi":"10.15294/jbat.v11i1.36124","DOIUrl":null,"url":null,"abstract":"Palm sugar is used as a natural sweetener that is added to food and beverages. The nutritional content in palm sugar can be enriched with the addition of antioxidants derived from red ginger (Zingiber officinale var. rubrum). The antioxidant activity of red ginger is 75.61% higher than that of emprit ginger and elephant ginger. The problem that arises during the production process of granulated palm sugar is the drying process that has not considered chemical characteristics, especially water content. The requirement for water content of palm sugar according to SNI 01-3743-1995 is a maximum of 3%. Moisture content is the main parameter that determines the quality of granulated palm sugar to long shelf life. Water content can affect other chemical characteristics such as sucrose, reducing sugar, ash content, calories, protein, fat, and carbohydrates. This optimization is using RSM (Response Surface Methodology) CCD model (Central Composite Design) on Software Statistica 10 with 20 treatments. The independent variables used were time (4-6 hours), material weight (100-300) grams, and material size (10-26 mesh). Data processing with Statistica 10 software resulted in the optimum water content condition of 2.9019%, with the drying process conditions covering 6.68 hours, material weight 368.18 grams, and material size 31.45 mesh. Validation was carried out to test the accuracy of the optimization results from Statistica 10 Software. The validation of the moisture content results obtained a value of 2.9016%, with an error percentage of 0.0003%. The chemical characteristic test was applied to the granulated palm sugar as a result of optimization so that the value of sucrose (96.5967%) was obtained, reducing sugar (6.0434%), ash content (1.8660%), calories (379.93%), protein (2,4268%), fat (0.3972%), and carbohydrates (91,5379%)","PeriodicalId":17764,"journal":{"name":"Jurnal Bahan Alam Terbarukan","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Bahan Alam Terbarukan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/jbat.v11i1.36124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Palm sugar is used as a natural sweetener that is added to food and beverages. The nutritional content in palm sugar can be enriched with the addition of antioxidants derived from red ginger (Zingiber officinale var. rubrum). The antioxidant activity of red ginger is 75.61% higher than that of emprit ginger and elephant ginger. The problem that arises during the production process of granulated palm sugar is the drying process that has not considered chemical characteristics, especially water content. The requirement for water content of palm sugar according to SNI 01-3743-1995 is a maximum of 3%. Moisture content is the main parameter that determines the quality of granulated palm sugar to long shelf life. Water content can affect other chemical characteristics such as sucrose, reducing sugar, ash content, calories, protein, fat, and carbohydrates. This optimization is using RSM (Response Surface Methodology) CCD model (Central Composite Design) on Software Statistica 10 with 20 treatments. The independent variables used were time (4-6 hours), material weight (100-300) grams, and material size (10-26 mesh). Data processing with Statistica 10 software resulted in the optimum water content condition of 2.9019%, with the drying process conditions covering 6.68 hours, material weight 368.18 grams, and material size 31.45 mesh. Validation was carried out to test the accuracy of the optimization results from Statistica 10 Software. The validation of the moisture content results obtained a value of 2.9016%, with an error percentage of 0.0003%. The chemical characteristic test was applied to the granulated palm sugar as a result of optimization so that the value of sucrose (96.5967%) was obtained, reducing sugar (6.0434%), ash content (1.8660%), calories (379.93%), protein (2,4268%), fat (0.3972%), and carbohydrates (91,5379%)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
响应面法优化红姜棕榈糖干燥工艺
棕榈糖被用作天然甜味剂,添加到食品和饮料中。添加从红姜中提取的抗氧化剂可以丰富棕榈糖的营养成分。红姜的抗氧化活性比白姜和象姜高75.61%。棕榈糖颗粒生产过程中出现的问题是干燥过程没有考虑化学特性,特别是含水量。SNI 01-3743-1995对棕榈糖的含水量要求不超过3%。水分含量是决定棕榈糖颗粒质量能否延长保质期的主要参数。水分含量会影响其他化学特性,如蔗糖、还原糖、灰分含量、卡路里、蛋白质、脂肪和碳水化合物。该优化是在软件统计10上使用响应面方法(RSM) CCD模型(中央复合设计)进行20个处理。自变量为时间(4-6小时)、物料重量(100-300克)、物料粒度(10-26目)。利用Statistica 10软件对数据进行处理,得到最佳含水量条件为2.9019%,干燥工艺条件为6.68 h,物料重368.18 g,物料粒度31.45目。对Statistica 10软件优化结果的准确性进行验证。验证结果的含水率为2.9016%,误差率为0.0003%。对棕榈糖颗粒进行化学特性试验,优化得到蔗糖(96.5967%)、还原糖(6.0434%)、灰分(1.8660%)、热量(379.93%)、蛋白质(2,4268%)、脂肪(0.3972%)和碳水化合物(91,5379%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Optimization of Rhizopus Sp. Growth Media for Biofoam Manufacture: Effect of Temperature and Substrate Composition Optimization of Operating Condition for the Production of Edible Film from Cuttlefish’s Bone Gelatin as Instant Noodle Seasoning Packaging Preparation of Composite Reinforced Agent Based on Sweet Sorghum Stalk Fiber through Alkali Pressure Steam Treated Method The Properties of Particleboard Composites Made from Pleurotus ostreatus Baglog Waste Using Citric Acid and Sucrose Adhesive Optimization of Glycerolysis of Free Fatty Acids from Cocoa Bean with MgO Catalyst Using Response Surface Methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1