Clustering Assisted Regional SpatioTemporal Sequence Pattern Mining in Crime Database- CReST

{"title":"Clustering Assisted Regional SpatioTemporal Sequence Pattern Mining in Crime Database- CReST","authors":"","doi":"10.4018/ijagr.298300","DOIUrl":null,"url":null,"abstract":"With the recent advances in IoT and other smart devices, an explosive amount of data, both spatially and temporally significant are generated. Discovering interesting or useful patterns from these spatiotemporal data is referred to as spatiotemporal data mining. These patterns could be unordered, totally ordered or partially ordered based on the temporal ordering. This work focusses on the totally ordered patterns or sequential patterns from spatiotemporal event database. Spatiotemporal event sequence miner finds sequence of events that overlaps spatially and temporally. Traditional approaches discover patterns that are frequent in the entire dataset. In this work a clustering-assisted approach to find regionally or locally frequent spatiotemporal pattern is proposed. The proposed Clustering assisted Regional Spatiotemporal Event Sequence (CReST) mining approach overcomes the bias caused by uneven distribution of spatiotemporal events while mining patterns. Chicago crime dataset is used for evaluating the proposed approach with traditional sequence mining algorithm.","PeriodicalId":43062,"journal":{"name":"International Journal of Applied Geospatial Research","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Geospatial Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijagr.298300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

With the recent advances in IoT and other smart devices, an explosive amount of data, both spatially and temporally significant are generated. Discovering interesting or useful patterns from these spatiotemporal data is referred to as spatiotemporal data mining. These patterns could be unordered, totally ordered or partially ordered based on the temporal ordering. This work focusses on the totally ordered patterns or sequential patterns from spatiotemporal event database. Spatiotemporal event sequence miner finds sequence of events that overlaps spatially and temporally. Traditional approaches discover patterns that are frequent in the entire dataset. In this work a clustering-assisted approach to find regionally or locally frequent spatiotemporal pattern is proposed. The proposed Clustering assisted Regional Spatiotemporal Event Sequence (CReST) mining approach overcomes the bias caused by uneven distribution of spatiotemporal events while mining patterns. Chicago crime dataset is used for evaluating the proposed approach with traditional sequence mining algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
犯罪数据库CReST中聚类辅助的区域时空序列模式挖掘
随着物联网和其他智能设备的最新进展,在空间和时间上都产生了爆炸式的数据量。从这些时空数据中发现有趣或有用的模式称为时空数据挖掘。根据时间顺序,这些模式可以是无序的、完全有序的或部分有序的。本文主要研究时空事件数据库中的全有序模式和顺序模式。时空事件序列挖掘器查找在时空上重叠的事件序列。传统方法发现在整个数据集中频繁出现的模式。在这项工作中,提出了一种聚类辅助方法来寻找区域或局部频繁的时空模式。本文提出的聚类辅助区域时空事件序列(CReST)挖掘方法克服了挖掘模式时时空事件分布不均匀造成的偏差。利用芝加哥犯罪数据集与传统的序列挖掘算法对该方法进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
22
期刊最新文献
Prioritization of Sub-Watershed Based on Soil Loss Estimation Using RUSLE Model Capability Analysis of Suitable Natural Habitat for Wild American Ginseng Capability Analysis of Suitable Natural Habitat for Wild American Ginseng Automated Detection of On-Farm Irrigation Reservoirs in Two Critical Groundwater Regions of Arkansas Spatiotemporal Monitoring of Land Reclamation in the Southeastern Desert, Upper Egypt Using Satellite Data and GIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1