Enabling effective electrochemical healing of structural steel

Q1 Materials Science Multifunctional Materials Pub Date : 2021-05-12 DOI:10.1088/2399-7532/abfb4f
Zakaria Hsain, Zhimin Jiang, J. Pikul
{"title":"Enabling effective electrochemical healing of structural steel","authors":"Zakaria Hsain, Zhimin Jiang, J. Pikul","doi":"10.1088/2399-7532/abfb4f","DOIUrl":null,"url":null,"abstract":"Low-carbon steel is a widely used structural metal that, when fractured, can be repaired with high temperature processes. There are many applications, however, that would benefit from a room-temperature repair process which maintains the steel microstructure and prevents nearby materials and electronics from overheating. This work seeks to enable effective room-temperature healing of steel by understanding how ion transport and electrolyte chemistry influence growth morphology and strength in fractured steel struts repaired with nickel electrodeposition. Experiments and simulations show that pulsed electroplating mitigates diffusion-limited growth to enable smooth and dense nickel deposits that have 4× higher adhesion to steel than nickel deposited by potentiostatic electroplating. By combining pulsed electroplating and electrolyte chemistry selection, fully fractured steel wires could be repaired to achieve up to 69% of their pristine wire strength. Finally, a simple geometric model highlights the advantageous energy and time requirements of electrochemical healing across length scales.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multifunctional Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-7532/abfb4f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

Abstract

Low-carbon steel is a widely used structural metal that, when fractured, can be repaired with high temperature processes. There are many applications, however, that would benefit from a room-temperature repair process which maintains the steel microstructure and prevents nearby materials and electronics from overheating. This work seeks to enable effective room-temperature healing of steel by understanding how ion transport and electrolyte chemistry influence growth morphology and strength in fractured steel struts repaired with nickel electrodeposition. Experiments and simulations show that pulsed electroplating mitigates diffusion-limited growth to enable smooth and dense nickel deposits that have 4× higher adhesion to steel than nickel deposited by potentiostatic electroplating. By combining pulsed electroplating and electrolyte chemistry selection, fully fractured steel wires could be repaired to achieve up to 69% of their pristine wire strength. Finally, a simple geometric model highlights the advantageous energy and time requirements of electrochemical healing across length scales.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现结构钢的有效电化学愈合
低碳钢是一种广泛使用的结构金属,当断裂时,可以通过高温工艺进行修复。然而,有许多应用将受益于室温修复工艺,该工艺可以保持钢的微观结构并防止附近的材料和电子设备过热。这项工作旨在通过了解离子传输和电解质化学如何影响用镍电沉积修复的断裂钢支柱的生长形态和强度,实现钢的有效室温愈合。实验和模拟表明,脉冲电镀减轻了扩散限制的生长,使镍镀层光滑致密,对钢的附着力比恒电位电镀沉积的镍高4倍。通过结合脉冲电镀和电解质化学选择,可以修复完全断裂的钢丝,使其达到原始钢丝强度的69%。最后,一个简单的几何模型突出了电化学愈合在长度尺度上的有利能量和时间要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multifunctional Materials
Multifunctional Materials Materials Science-Materials Science (miscellaneous)
CiteScore
12.80
自引率
0.00%
发文量
9
期刊最新文献
Sustainably Grown: The Underdog Robots of the Future Origami-patterned capacitor with programmed strain sensitivity Mechanical, electrochemical and multifunctional performance of a CFRP/carbon aerogel structural supercapacitor and its corresponding monofunctional equivalents Optically controlled grasping-slipping robot moving on tubular surfaces Encapsulation and on-demand release of functional materials from conductive nanofibers via electrical signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1