Kupczynski’s Contextual Locally Causal Probabilistic Models Are Constrained by Bell’s Theorem

Q2 Physics and Astronomy Quantum Reports Pub Date : 2022-08-21 DOI:10.3390/quantum5020032
Richard D. Gill, J. P. Lambare
{"title":"Kupczynski’s Contextual Locally Causal Probabilistic Models Are Constrained by Bell’s Theorem","authors":"Richard D. Gill, J. P. Lambare","doi":"10.3390/quantum5020032","DOIUrl":null,"url":null,"abstract":"In a sequence of papers, Marian Kupczynski has argued that Bell’s theorem can be circumvented if one takes correct account of contextual setting-dependent parameters describing measuring instruments. We show that this is not true. Despite first appearances, Kupczynksi’s concept of a contextual locally causal probabilistic model is mathematically a special case of a Bell local hidden variables model. Thus, even if one takes account of contextuality in the way he suggests, the Bell–CHSH inequality can still be derived. Violation thereof by quantum mechanics cannot be easily explained away: quantum mechanics and local realism (including Kupczynski’s claimed enlargement of the concept) are not compatible with one another. Further inspection shows that Kupczynski is actually falling back on the detection loophole. Since 2015, numerous loophole-free experiments have been performed, in which the Bell–CHSH inequality is violated, so, despite any other possible imperfections of such experiments, Kupczynski’s escape route for local realism is not available.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/quantum5020032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 3

Abstract

In a sequence of papers, Marian Kupczynski has argued that Bell’s theorem can be circumvented if one takes correct account of contextual setting-dependent parameters describing measuring instruments. We show that this is not true. Despite first appearances, Kupczynksi’s concept of a contextual locally causal probabilistic model is mathematically a special case of a Bell local hidden variables model. Thus, even if one takes account of contextuality in the way he suggests, the Bell–CHSH inequality can still be derived. Violation thereof by quantum mechanics cannot be easily explained away: quantum mechanics and local realism (including Kupczynski’s claimed enlargement of the concept) are not compatible with one another. Further inspection shows that Kupczynski is actually falling back on the detection loophole. Since 2015, numerous loophole-free experiments have been performed, in which the Bell–CHSH inequality is violated, so, despite any other possible imperfections of such experiments, Kupczynski’s escape route for local realism is not available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kupczynski上下文局部因果概率模型受Bell定理约束
在一系列论文中,Marian Kupczynski认为,如果正确考虑描述测量仪器的上下文设置相关参数,就可以绕过贝尔定理。我们证明这不是真的。尽管首次出现,Kupczynksi的上下文局部因果概率模型的概念在数学上是Bell局部隐变量模型的特例。因此,即使按照他的建议考虑了情境性,Bell–CHSH不等式仍然可以推导出来。量子力学违反了这一点,这一点很难解释:量子力学和局部实在论(包括库普钦斯基声称的对概念的扩大)是不兼容的。进一步的检查表明,库普钦斯基实际上是在利用检测漏洞。自2015年以来,已经进行了许多无漏洞的实验,其中违反了Bell–CHSH不等式,因此,尽管这些实验有任何其他可能的缺陷,Kupczynski的局部现实主义逃生路线是不可用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Reports
Quantum Reports Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
3.30
自引率
0.00%
发文量
33
审稿时长
10 weeks
期刊最新文献
Nitrogen-Related High-Spin Vacancy Defects in Bulk (SiC) and 2D (hBN) Crystals: Comparative Magnetic Resonance (EPR and ENDOR) Study Fisher Information for a System Composed of a Combination of Similar Potential Models A Normalization Condition for the Probability Current in Some Remarkable Cases The Many-Worlds Interpretation of Quantum Mechanics: Current Status and Relation to Other Interpretations Tomographic Universality of the Discrete Wigner Function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1