An adaptive approach for compression format based on bagging algorithm

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS International Journal of Parallel Emergent and Distributed Systems Pub Date : 2023-07-13 DOI:10.1080/17445760.2023.2231291
Huanyu Cui, Qilong Han, Nianbin Wang, Ye Wang
{"title":"An adaptive approach for compression format based on bagging algorithm","authors":"Huanyu Cui, Qilong Han, Nianbin Wang, Ye Wang","doi":"10.1080/17445760.2023.2231291","DOIUrl":null,"url":null,"abstract":"ABSTRACT The traditional parallel Sparse matrix vector multiplication (SpMV) method has been optimized by an application-specific or compression format-specific. However, a single compression format cannot deal with all sparse matrix types effectively in practical applications. To solve this problem, an adaptive compression format based on Bagging ensemble learning algorithm is proposed in this paper. Experiments show that the adaptive compression format has higher prediction and computational performance on NVIDIA V100 and NVIDIA RTX 2080Ti. Compared with SpMV of the four compression formats, SpMV based on adaptive compression format reduces the execution time of 1.5×, 6.6×, 9× and 1.1×, respectively.","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2023.2231291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The traditional parallel Sparse matrix vector multiplication (SpMV) method has been optimized by an application-specific or compression format-specific. However, a single compression format cannot deal with all sparse matrix types effectively in practical applications. To solve this problem, an adaptive compression format based on Bagging ensemble learning algorithm is proposed in this paper. Experiments show that the adaptive compression format has higher prediction and computational performance on NVIDIA V100 and NVIDIA RTX 2080Ti. Compared with SpMV of the four compression formats, SpMV based on adaptive compression format reduces the execution time of 1.5×, 6.6×, 9× and 1.1×, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于装袋算法的自适应压缩格式方法
摘要传统的并行稀疏矩阵向量乘法(SpMV)方法通过特定应用或特定压缩格式进行了优化。然而,在实际应用中,单一的压缩格式不能有效地处理所有的稀疏矩阵类型。为了解决这一问题,本文提出了一种基于Bagging集成学习算法的自适应压缩格式。实验表明,该自适应压缩格式在NVIDIA V100和NVIDIA RTX 2080Ti上具有较高的预测性能和计算性能。与四种压缩格式的SpMV相比,基于自适应压缩格式的SpMV执行时间分别减少1.5倍、6.6倍、9倍和1.1倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
期刊最新文献
Enhancing blockchain security through natural language processing and real-time monitoring Verification of cryptocurrency consensus protocols: reenterable colored Petri net model design Security and dependability analysis of blockchain systems in partially synchronous networks with Byzantine faults Fundamental data structures for matrix-free finite elements on hybrid tetrahedral grids Blocking aware offline survivable path provisioning of connection requests in elastic optical networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1