Clarifying the Distinction Between Steric and Baroclinic Sea Surface Height

IF 2.8 2区 地球科学 Q1 OCEANOGRAPHY Journal of Physical Oceanography Pub Date : 2023-08-23 DOI:10.1175/jpo-d-23-0073.1
E. Zaron, R. Ray
{"title":"Clarifying the Distinction Between Steric and Baroclinic Sea Surface Height","authors":"E. Zaron, R. Ray","doi":"10.1175/jpo-d-23-0073.1","DOIUrl":null,"url":null,"abstract":"\nOne of the most fundamental uses of ocean models is for the prediction of sea level. Vertical integration of the hydrostatic equation leads to the partitioning of sea level in terms of atmospheric pressure, steric height, and bottom pressure. In an effort to validate the baroclinic wave dynamics of numerical ocean models, some researchers have compared the steric height from models with the sea level anomaly derived from satellite altimetry. The use of steric height in these comparisons captures the qualitative aspects of the baroclinic waves, but it neglects a non-negligible contribution from bottom pressure. A more accurate evaluation of baroclinic wave dynamics using sea level would involve projecting the pressure field onto orthogonal barotropic and baroclinic components to isolate the baroclinic sea level anomaly. This note illustrates the quantitative difference between steric height and baroclinic sea level, which amounts to approximately a 20% bias of steric height over baroclinic sea level, depending on location.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-23-0073.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most fundamental uses of ocean models is for the prediction of sea level. Vertical integration of the hydrostatic equation leads to the partitioning of sea level in terms of atmospheric pressure, steric height, and bottom pressure. In an effort to validate the baroclinic wave dynamics of numerical ocean models, some researchers have compared the steric height from models with the sea level anomaly derived from satellite altimetry. The use of steric height in these comparisons captures the qualitative aspects of the baroclinic waves, but it neglects a non-negligible contribution from bottom pressure. A more accurate evaluation of baroclinic wave dynamics using sea level would involve projecting the pressure field onto orthogonal barotropic and baroclinic components to isolate the baroclinic sea level anomaly. This note illustrates the quantitative difference between steric height and baroclinic sea level, which amounts to approximately a 20% bias of steric height over baroclinic sea level, depending on location.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
澄清立体海面高度与斜压海面高度的区别
海洋模型最基本的用途之一是预测海平面。流体静力方程的垂直积分导致了海平面根据大气压力、立体高度和底部压力的划分。为了验证海洋数值模型的斜压波动力学,一些研究人员将模型中的空间高度与卫星测高得出的海平面异常进行了比较。在这些比较中使用空间高度捕捉了斜压波的定性方面,但忽略了底部压力的不可忽略的贡献。使用海平面对斜压波动力学进行更准确的评估需要将压力场投影到正交的正压和斜压分量上,以隔离斜压海平面异常。该注释说明了立体高度和斜压海平面之间的定量差异,根据位置的不同,立体高度相对于斜压海水平的偏差约为20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
20.00%
发文量
200
审稿时长
4.5 months
期刊介绍: The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.
期刊最新文献
Why is the Westward Rossby Wave Propagation from the California Coast “Too Fast”? Observations of Parametric Subharmonic Instability of Diurnal Internal Tides in the Northwest Pacific Imprint of chaos on the ocean energy cycle from an eddying North Atlantic ensemble Interpreting Negative IOD Events Based on the Transfer Routes of Wave Energy in the Upper Ocean On the Pathways of Wind-Driven Coastal Upwelling: Nonlinear Momentum Flux and Baroclinic Instability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1