A Machine Learning Approach for the Simultaneous Detection of Preknowledge in Examinees and Items When Both Are Unknown

IF 2.7 4区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH Educational Measurement-Issues and Practice Pub Date : 2023-02-24 DOI:10.1111/emip.12543
Yiqin Pan, James A. Wollack
{"title":"A Machine Learning Approach for the Simultaneous Detection of Preknowledge in Examinees and Items When Both Are Unknown","authors":"Yiqin Pan,&nbsp;James A. Wollack","doi":"10.1111/emip.12543","DOIUrl":null,"url":null,"abstract":"<p>Pan and Wollack (PW) proposed a machine learning method to detect compromised items. We extend the work of PW to an approach detecting compromised items and examinees with item preknowledge simultaneously and draw on ideas in ensemble learning to relax several limitations in the work of PW. The suggested approach also provides a confidence score, which is based on an autoencoder to represent our confidence that the detection result truly corresponds to item preknowledge. Simulation studies indicate that the proposed approach performs well in the detection of item preknowledge, and the confidence score can provide helpful information for users.</p>","PeriodicalId":47345,"journal":{"name":"Educational Measurement-Issues and Practice","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational Measurement-Issues and Practice","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/emip.12543","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1

Abstract

Pan and Wollack (PW) proposed a machine learning method to detect compromised items. We extend the work of PW to an approach detecting compromised items and examinees with item preknowledge simultaneously and draw on ideas in ensemble learning to relax several limitations in the work of PW. The suggested approach also provides a confidence score, which is based on an autoencoder to represent our confidence that the detection result truly corresponds to item preknowledge. Simulation studies indicate that the proposed approach performs well in the detection of item preknowledge, and the confidence score can provide helpful information for users.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种机器学习方法在未知的情况下同时检测考生和项目中的先验知识
Pan和Wollack (PW)提出了一种机器学习方法来检测受损物品。我们将PW的工作扩展到一种同时检测折衷项目和具有项目预知的考生的方法,并借鉴集成学习的思想来放宽PW工作中的几个限制。建议的方法还提供了一个置信度评分,该评分基于自动编码器来表示我们对检测结果真正对应于项目预知的置信度。仿真研究表明,该方法在项目预知检测中表现良好,置信度得分可以为用户提供有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
15.00%
发文量
47
期刊最新文献
Issue Information Editorial Issue Cover On the Cover: Gendered Trajectories of Digital Literacy Development: Insights from a Longitudinal Cohort Study Digital Module 36: Applying Intersectionality Theory to Educational Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1