Overdisp: A Stata (and Mata) Package for Direct Detection of Overdispersion in Poisson and Negative Binomial Regression Models

Luiz Paulo Fávero, P. Belfiore, Marco Aurélio dos Santos, R. F. Souza
{"title":"Overdisp: A Stata (and Mata) Package for Direct Detection of Overdispersion in Poisson and Negative Binomial Regression Models","authors":"Luiz Paulo Fávero, P. Belfiore, Marco Aurélio dos Santos, R. F. Souza","doi":"10.19139/soic-2310-5070-557","DOIUrl":null,"url":null,"abstract":"Stata has several procedures that can be used in analyzing count-data regression models and, more specifically, in studying the behavior of the dependent variable, conditional on explanatory variables. Identifying overdispersion in countdata models is one of the most important procedures that allow researchers to correctly choose estimations such as Poisson or negative binomial, given the distribution of the dependent variable. The main purpose of this paper is to present a new command for the identification of overdispersion in the data as an alternative to the procedure presented by Cameron and Trivedi [5], since it directly identifies overdispersion in the data, without the need to previously estimate a specific type of count-data model. When estimating Poisson or negative binomial regression models in which the dependent variable is quantitative, with discrete and non-negative values, the new Stata package overdisp helps researchers to directly propose more consistent and adequate models. As a second contribution, we also present a simulation to show the consistency of the overdispersion test using the overdisp command. Findings show that, if the test indicates equidispersion in the data, there are consistent evidence that the distribution of the dependent variable is, in fact, Poisson. If, on the other hand, the test indicates overdispersion in the data, researchers should investigate more deeply whether the dependent variable actually exhibits better adherence to the Poisson-Gamma distribution or not.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"773-789"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Stata has several procedures that can be used in analyzing count-data regression models and, more specifically, in studying the behavior of the dependent variable, conditional on explanatory variables. Identifying overdispersion in countdata models is one of the most important procedures that allow researchers to correctly choose estimations such as Poisson or negative binomial, given the distribution of the dependent variable. The main purpose of this paper is to present a new command for the identification of overdispersion in the data as an alternative to the procedure presented by Cameron and Trivedi [5], since it directly identifies overdispersion in the data, without the need to previously estimate a specific type of count-data model. When estimating Poisson or negative binomial regression models in which the dependent variable is quantitative, with discrete and non-negative values, the new Stata package overdisp helps researchers to directly propose more consistent and adequate models. As a second contribution, we also present a simulation to show the consistency of the overdispersion test using the overdisp command. Findings show that, if the test indicates equidispersion in the data, there are consistent evidence that the distribution of the dependent variable is, in fact, Poisson. If, on the other hand, the test indicates overdispersion in the data, researchers should investigate more deeply whether the dependent variable actually exhibits better adherence to the Poisson-Gamma distribution or not.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overdisp:一个Stata(和Mata)软件包,用于泊松和负二项回归模型中过度分散的直接检测
Stata有几个程序可用于分析计数数据回归模型,更具体地说,用于研究因变量的行为,条件是解释变量。识别计数数据模型中的过度分散是最重要的程序之一,它允许研究人员正确选择估计,如泊松或负二项估计,给定因变量的分布。本文的主要目的是提出一个新的命令来识别数据中的过离散,作为Cameron和Trivedi[5]提出的程序的替代方案,因为它直接识别数据中的过离散,而不需要事先估计特定类型的计数数据模型。当估计泊松或负二项回归模型,其中因变量是定量的,离散和非负的值,新的Stata包overdisp帮助研究人员直接提出更一致和充分的模型。作为第二个贡献,我们还提供了一个模拟,以显示使用overdisp命令的过色散测试的一致性。研究结果表明,如果检验表明数据中的等分散,则有一致的证据表明因变量的分布实际上是泊松分布。另一方面,如果测试表明数据过度分散,研究人员应该更深入地调查因变量是否实际上更好地遵循泊松-伽马分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution A Berry-Esseen Bound for Nonlinear Statistics with Bounded Differences The Weibull Distribution: Reliability Characterization Based on Linear and Circular Consecutive Systems Infinity Substitute in Finding Exact Minimum of Total Weighted Tardiness in Tight-Tardy Progressive 1-machine Scheduling by Idling-free Preemptions Testing the Validity of Lindley Model Based on Informational Energy with Application to Real Medical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1