Monte Carlo Simulation Studies in Item Response Theory with the R Programming Language

Pub Date : 2017-09-30 DOI:10.21031/EPOD.305821
O. Bulut, Önder Sünbül
{"title":"Monte Carlo Simulation Studies in Item Response Theory with the R Programming Language","authors":"O. Bulut, Önder Sünbül","doi":"10.21031/EPOD.305821","DOIUrl":null,"url":null,"abstract":"Monte Carlo simulation studies play an important role in operational and academic research in educational measurement and psychometrics. Item response theory (IRT) is a psychometric area in which researchers and practitioners often use Monte Carlo simulations to address various research questions. Over the past decade, R has been one of the most widely used programming languages in Monte Carlo studies. R is a free, open-source programming language for statistical computing and data visualization. Many user-created packages in R allow researchers to conduct various IRT analyses (e.g., item parameter estimation, ability estimation, and differential item functioning) and expand these analyses to comprehensive simulation scenarios where the researchers can investigate their specific research questions. This study aims to introduce R and demonstrate the design and implementation of Monte Carlo simulation studies using the R programming language. Three IRT-related Monte Carlo simulation studies are presented. Each simulation study involved a Monte Carlo simulation function based on the R programming language. The design and execution of the R commands is explained in the context of each simulation study.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21031/EPOD.305821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Monte Carlo simulation studies play an important role in operational and academic research in educational measurement and psychometrics. Item response theory (IRT) is a psychometric area in which researchers and practitioners often use Monte Carlo simulations to address various research questions. Over the past decade, R has been one of the most widely used programming languages in Monte Carlo studies. R is a free, open-source programming language for statistical computing and data visualization. Many user-created packages in R allow researchers to conduct various IRT analyses (e.g., item parameter estimation, ability estimation, and differential item functioning) and expand these analyses to comprehensive simulation scenarios where the researchers can investigate their specific research questions. This study aims to introduce R and demonstrate the design and implementation of Monte Carlo simulation studies using the R programming language. Three IRT-related Monte Carlo simulation studies are presented. Each simulation study involved a Monte Carlo simulation function based on the R programming language. The design and execution of the R commands is explained in the context of each simulation study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
用R程序设计语言对项目反应理论的蒙特卡罗模拟研究
蒙特卡洛模拟研究在教育测量和心理测量的操作和学术研究中发挥着重要作用。项目反应理论(IRT)是一个心理测量领域,研究人员和从业者经常使用蒙特卡罗模拟来解决各种研究问题。在过去的十年里,R一直是蒙特卡洛研究中使用最广泛的编程语言之一。R是一种用于统计计算和数据可视化的免费开源编程语言。许多用户创建的R包允许研究人员进行各种IRT分析(例如,项目参数估计、能力估计和差异项目功能),并将这些分析扩展到综合模拟场景,研究人员可以在其中调查他们的具体研究问题。本研究旨在介绍R,并演示使用R编程语言进行蒙特卡洛模拟研究的设计和实现。介绍了三个与IRT相关的蒙特卡罗模拟研究。每项模拟研究都涉及一个基于R编程语言的蒙特卡罗模拟函数。R命令的设计和执行将在每次模拟研究的背景下进行解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1