{"title":"Data Collection Expert Prior Elicitation in Survey Design: Two Case Studies","authors":"Shiya Wu, B. Schouten, R. Meijers, M. Moerbeek","doi":"10.2478/jos-2022-0028","DOIUrl":null,"url":null,"abstract":"Abstract Data collection staff involved in sampling designs, monitoring and analysis of surveys often have a good sense of the response rate that can be expected in a survey, even when this survey is new or done at a relatively low frequency. They make expectations of response rates, and, subsequently, costs on an almost continuous basis. Rarely, however, are these expectations formally structured. Furthermore, the expectations usually are point estimates without any assessment of precision or uncertainty. In recent years, the interest in adaptive survey designs has increased. These designs lean heavily on accurate estimates of response rates and costs. In order to account for inaccurate estimates, a Bayesian analysis of survey design parameters is very sensible. The combination of strong intrinsic knowledge of data collection staff and a Bayesian analysis is a natural next step. In this article, prior elicitation is developed for design parameters with the help of data collection staff. The elicitation is applied to two case studies in which surveys underwent a major redesign and direct historic survey data was unavailable.","PeriodicalId":51092,"journal":{"name":"Journal of Official Statistics","volume":"38 1","pages":"637 - 662"},"PeriodicalIF":0.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Official Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/jos-2022-0028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Data collection staff involved in sampling designs, monitoring and analysis of surveys often have a good sense of the response rate that can be expected in a survey, even when this survey is new or done at a relatively low frequency. They make expectations of response rates, and, subsequently, costs on an almost continuous basis. Rarely, however, are these expectations formally structured. Furthermore, the expectations usually are point estimates without any assessment of precision or uncertainty. In recent years, the interest in adaptive survey designs has increased. These designs lean heavily on accurate estimates of response rates and costs. In order to account for inaccurate estimates, a Bayesian analysis of survey design parameters is very sensible. The combination of strong intrinsic knowledge of data collection staff and a Bayesian analysis is a natural next step. In this article, prior elicitation is developed for design parameters with the help of data collection staff. The elicitation is applied to two case studies in which surveys underwent a major redesign and direct historic survey data was unavailable.
期刊介绍:
JOS is an international quarterly published by Statistics Sweden. We publish research articles in the area of survey and statistical methodology and policy matters facing national statistical offices and other producers of statistics. The intended readers are researchers or practicians at statistical agencies or in universities and private organizations dealing with problems which concern aspects of production of official statistics.