Surface Modification of Multi-Walled Carbon Nanotubes with Polysaccharides

Q4 Chemical Engineering ASEAN Journal of Chemical Engineering Pub Date : 2022-06-30 DOI:10.22146/ajche.69866
Francisca Larasati, Y. Kusumastuti, A. Mindaryani, R. Rochmadi, M. Handayani
{"title":"Surface Modification of Multi-Walled Carbon Nanotubes with Polysaccharides","authors":"Francisca Larasati, Y. Kusumastuti, A. Mindaryani, R. Rochmadi, M. Handayani","doi":"10.22146/ajche.69866","DOIUrl":null,"url":null,"abstract":"Multi-walled carbon nanotubes (MWCNTs) are known as efficient drug carriers. To improve their interaction with other materials, surface modification of MWCNTs is necessary. In this work, MWCNTs were functionalized with acid and polysaccharides (chitosan and gelatin). The functionalization process was done via modification with acid solutions of nitric acid, sulfuric acid, and a mixture of nitric acid-sulfuric acid first, followed by functionalization with chitosan and gelatin. To achieve the optimum condition of MWCNTs functionalization, the reaction time, temperature, and acid ratio were varied. Furthermore, the effect of chitosan and gelatin addition into MWCNTs was studied at various mass ratios. The synthesized materials were characterized by Fourier transform infrared spectrophotometer, Boehm titration, and dispersion test. The Boehm titration results showed that the acid functional groups had been attached successfully to MWCNTs surface. The amount of acid functional groups increased along with reaction time. The highest amount of acidic group obtained from the data was 2.33 mmol/g. It was achieved when MWCNTs reacted with nitric acid for 24 hours. Temperature and acid ratio variations on the MWCNTs functionalization did not provide significant results. From the FTIR data, sharp peaks at 3480 cm-1 and 1040 cm-1 indicates a -CONH bond, which shows that chitosan and gelatin have been successfully grafted onto MWCNTs surface via an amide linkage. Moreover, the dispersion test showed that the functionalized materials were stable for 48 hours.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ajche.69866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Multi-walled carbon nanotubes (MWCNTs) are known as efficient drug carriers. To improve their interaction with other materials, surface modification of MWCNTs is necessary. In this work, MWCNTs were functionalized with acid and polysaccharides (chitosan and gelatin). The functionalization process was done via modification with acid solutions of nitric acid, sulfuric acid, and a mixture of nitric acid-sulfuric acid first, followed by functionalization with chitosan and gelatin. To achieve the optimum condition of MWCNTs functionalization, the reaction time, temperature, and acid ratio were varied. Furthermore, the effect of chitosan and gelatin addition into MWCNTs was studied at various mass ratios. The synthesized materials were characterized by Fourier transform infrared spectrophotometer, Boehm titration, and dispersion test. The Boehm titration results showed that the acid functional groups had been attached successfully to MWCNTs surface. The amount of acid functional groups increased along with reaction time. The highest amount of acidic group obtained from the data was 2.33 mmol/g. It was achieved when MWCNTs reacted with nitric acid for 24 hours. Temperature and acid ratio variations on the MWCNTs functionalization did not provide significant results. From the FTIR data, sharp peaks at 3480 cm-1 and 1040 cm-1 indicates a -CONH bond, which shows that chitosan and gelatin have been successfully grafted onto MWCNTs surface via an amide linkage. Moreover, the dispersion test showed that the functionalized materials were stable for 48 hours.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多壁碳纳米管的多糖表面改性研究
多壁碳纳米管(MWCNTs)是一种高效的药物载体。为了改善其与其他材料的相互作用,必须对MWCNTs进行表面改性。在这项工作中,MWCNTs被酸和多糖(壳聚糖和明胶)功能化。先用硝酸、硫酸和硝酸-硫酸混合溶液进行改性,再用壳聚糖和明胶进行功能化。为达到MWCNTs功能化的最佳条件,改变了反应时间、温度和酸比。此外,还研究了壳聚糖和明胶在不同质量比下对MWCNTs的影响。采用傅里叶变换红外分光光度计、Boehm滴定法和色散试验对合成材料进行了表征。Boehm滴定结果表明,酸性官能团已成功附着在MWCNTs表面。酸性官能团的数量随着反应时间的延长而增加。从数据中得到的最高酸性组为2.33 mmol/g。这是在MWCNTs与硝酸反应24小时后实现的。温度和酸比变化对MWCNTs功能化的影响没有显著的结果。从FTIR数据可以看出,在3480 cm-1和1040 cm-1处的尖峰表明存在-CONH键,表明壳聚糖和明胶通过酰胺键成功接枝到MWCNTs表面。分散测试表明,功能化材料在48小时内保持稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ASEAN Journal of Chemical Engineering
ASEAN Journal of Chemical Engineering Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
15
期刊最新文献
Optimization of Defective Coffee Beans Decaffeination Using Palm Oil The Deep Eutectic Solvent in Used Batteries as an Electrolyte Additive for Potential Chitosan Solid Electrolyte Membrane Chemical Properties and Breakthrough Adsorption Study of Activated Carbon Derived from Carbon Precursor from Carbide Industry Extraction of Java Lemongrass (Cymbopogon citratus) Using Microwave-Assisted Hydro Distillation in Pilot Scale: Parametric Study and Modelling Catalytic Decarboxylation of Palm Oil to Green Diesel over Pellets of Ni-CaO/Activated Carbon (AC) Catalyst Under Subcritical Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1