Image Sketch Based Criminal Face Recognition Using Content Based Image Retrieval

Adimas Adimas, S. Irianto
{"title":"Image Sketch Based Criminal Face Recognition Using Content Based Image Retrieval","authors":"Adimas Adimas, S. Irianto","doi":"10.15294/sji.v8i2.27865","DOIUrl":null,"url":null,"abstract":"Purpose: Face recognition is a geometric space recording activity that allows it to be used to distinguish the features of a face. Therefore, facial recognition can be used to identify ID cards, ATM card PINs, search for one’s committed crimes, terrorists, and other criminals whose faces were not caught by Close-Circuit Television (CCTV). Based on the face image database and by applying the Content-Base Image Retrieval method (CBIR), committed crimes can be recognized on his face. Moreover, the image segmentation technique was carried out before CBIR was applied. This work tried to recognize an individual who committed crimes based on his or her face by using sketch facial images as a query. Methods: We used an image sketch as a querybecause CCTV could not have caught the face image. The research used no less than 1,000 facial images were carried out, both normal as well asabnormal faces (with obstacles). Findings:Experiments demonstrated good enough in terms of precision and recall, which are 0,8 and 0,3 respectively, which is better than at least two previous works.The work demonstrates a precision of 80% which means retrieval of effectiveness is good enough. The 75 queries were carried out in this work to compute the precision and recall of image retrieval. Novelty: Most face recognition researchers using CBIR employed an image as a query. Furthermore, previous work still rarely applied image segmentation as well as CBIR.","PeriodicalId":30781,"journal":{"name":"Scientific Journal of Informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/sji.v8i2.27865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Purpose: Face recognition is a geometric space recording activity that allows it to be used to distinguish the features of a face. Therefore, facial recognition can be used to identify ID cards, ATM card PINs, search for one’s committed crimes, terrorists, and other criminals whose faces were not caught by Close-Circuit Television (CCTV). Based on the face image database and by applying the Content-Base Image Retrieval method (CBIR), committed crimes can be recognized on his face. Moreover, the image segmentation technique was carried out before CBIR was applied. This work tried to recognize an individual who committed crimes based on his or her face by using sketch facial images as a query. Methods: We used an image sketch as a querybecause CCTV could not have caught the face image. The research used no less than 1,000 facial images were carried out, both normal as well asabnormal faces (with obstacles). Findings:Experiments demonstrated good enough in terms of precision and recall, which are 0,8 and 0,3 respectively, which is better than at least two previous works.The work demonstrates a precision of 80% which means retrieval of effectiveness is good enough. The 75 queries were carried out in this work to compute the precision and recall of image retrieval. Novelty: Most face recognition researchers using CBIR employed an image as a query. Furthermore, previous work still rarely applied image segmentation as well as CBIR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像素描的罪犯人脸识别
目的:人脸识别是一种几何空间记录活动,可以用来区分人脸的特征。因此,人脸识别可以用于识别身份证、ATM卡密码、搜索犯罪记录、恐怖分子和其他没有被闭路电视(CCTV)捕捉到的罪犯。基于人脸图像数据库,采用基于内容的图像检索方法(Content-Base image Retrieval, CBIR),实现了人脸犯罪的识别。此外,在应用CBIR之前,还进行了图像分割技术。该作品试图通过素描面部图像作为查询,以人脸为基础识别犯罪嫌疑人。方法:由于闭路电视无法捕捉到人脸图像,我们使用图像草图作为查询。这项研究使用了不少于1000张的面部图像,包括正常和异常的面部(有障碍物)。结果:实验结果表明,在查准率和查全率方面,我们的查准率和查全率分别为0.8和0.3,优于至少两篇前人的研究成果。结果表明,该方法的检索精度可达80%,检索效果良好。通过75个查询来计算图像检索的查准率和查全率。新颖性:大多数使用CBIR的人脸识别研究人员使用图像作为查询。此外,以往的工作仍然很少应用图像分割和CBIR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊最新文献
A Comparative Study of Random Forest and Double Random Forest Models from View Points of Their Interpretability Comparative Analysis of LSTM Neural Network and SVM for USD Exchange Rate Prediction: A Study on Different Training Data Scenarios Knowledge Discovery from Confusion Matrix of Pruned CART in Imbalanced Microarray Data Ovarian Cancer Classification Comparison of Discriminant Analysis and Support Vector Machine on Mixed Categorical and Continuous Independent Variables for COVID-19 Patients Data The Comparison of K-Nearest Neighbors and Random Forest Algorithm to Recognize Indonesian Sign Language in a Real-Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1