Online Structured Sparsity-Based Moving-Object Detection From Satellite Videos

IF 7.5 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Geoscience and Remote Sensing Pub Date : 2020-03-16 DOI:10.1109/TGRS.2020.2976855
Junpeng Zhang;Xiuping Jia;Jiankun Hu;Jocelyn Chanussot
{"title":"Online Structured Sparsity-Based Moving-Object Detection From Satellite Videos","authors":"Junpeng Zhang;Xiuping Jia;Jiankun Hu;Jocelyn Chanussot","doi":"10.1109/TGRS.2020.2976855","DOIUrl":null,"url":null,"abstract":"Inspired by the recent developments in computer vision, low-rank and structured sparse matrix decomposition can be potentially be used for extract moving objects in satellite videos. This set of approaches seeks for rank minimization on the background that typically requires batch-based optimization over a sequence of frames, which causes delays in processing and limits their applications. To remedy this delay, we propose an online low-rank and structured sparse decomposition (O-LSD). O-LSD reformulates the batch-based low-rank matrix decomposition with the structured sparse penalty to its equivalent framewise separable counterpart, which then defines a stochastic optimization problem for online subspace basis estimation. In order to promote online processing, O-LSD conducts the foreground and background separations and the subspace basis update alternatingly for every frame in a video. We also show the convergence of O-LSD theoretically. Experimental results on two satellite videos demonstrate the performance of O-LSD in terms of accuracy, and the time consumption is comparable with the batch-based approaches with significantly reduced delay in processing.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"58 9","pages":"6420-6433"},"PeriodicalIF":7.5000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TGRS.2020.2976855","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9037205/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 14

Abstract

Inspired by the recent developments in computer vision, low-rank and structured sparse matrix decomposition can be potentially be used for extract moving objects in satellite videos. This set of approaches seeks for rank minimization on the background that typically requires batch-based optimization over a sequence of frames, which causes delays in processing and limits their applications. To remedy this delay, we propose an online low-rank and structured sparse decomposition (O-LSD). O-LSD reformulates the batch-based low-rank matrix decomposition with the structured sparse penalty to its equivalent framewise separable counterpart, which then defines a stochastic optimization problem for online subspace basis estimation. In order to promote online processing, O-LSD conducts the foreground and background separations and the subspace basis update alternatingly for every frame in a video. We also show the convergence of O-LSD theoretically. Experimental results on two satellite videos demonstrate the performance of O-LSD in terms of accuracy, and the time consumption is comparable with the batch-based approaches with significantly reduced delay in processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于结构化稀疏的在线卫星视频运动目标检测
受计算机视觉最新发展的启发,低秩和结构化稀疏矩阵分解可以潜在地用于提取卫星视频中的运动物体。这组方法在后台寻求秩最小化,这通常需要对一系列帧进行基于批处理的优化,这会导致处理延迟并限制其应用。为了弥补这种延迟,我们提出了一种在线低秩结构化稀疏分解(O-LSD)。O-LSD将基于批处理的低秩矩阵分解与结构化稀疏惩罚重新表述为等价的分帧可分矩阵,从而定义了一个在线子空间基估计的随机优化问题。为了促进在线处理,O-LSD对视频中的每一帧交替进行前景和背景分离以及子空间基更新。从理论上证明了O-LSD的收敛性。在两个卫星视频上的实验结果证明了O-LSD在精度方面的性能,并且时间消耗与基于批处理的方法相当,并且显著降低了处理延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
期刊最新文献
Dark Signal Modeling For UV CCD-Array Spectrometer Using Ghost Pixels Adaptive Multi-task Autoencoder-based Hyperspectral Unmixing Exploiting Auxiliary Data via Graph Associations A Radiative Transfer Model-driven Machine Learning Approach to Estimate the Snow Surface Albedo over the Greenland Ice Sheet Transforming Coastal GNSS Stations into Tsunami Gauges with Adaptive Window Interferometric Reflectometry Predictive Rotation Fusion: A Physical Model-Based Fusion Method for Full-Polarimetric GPR Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1