Porous Ceramic ZnO Nanopowders: Features of Photoluminescence, Adsorption and Photocatalytic Properties

IF 2.7 Q1 MATERIALS SCIENCE, CERAMICS Ceramics-Switzerland Pub Date : 2023-08-02 DOI:10.3390/ceramics6030103
Marianna F. Gavrilova, Diana Gavrilova, S. Evstropiev, A. Shelemanov, I. Bagrov
{"title":"Porous Ceramic ZnO Nanopowders: Features of Photoluminescence, Adsorption and Photocatalytic Properties","authors":"Marianna F. Gavrilova, Diana Gavrilova, S. Evstropiev, A. Shelemanov, I. Bagrov","doi":"10.3390/ceramics6030103","DOIUrl":null,"url":null,"abstract":"The grainy and porous ZnO powders were synthesized by thermal decomposition of zinc nitrate and polymer-salt method. The comparative study of the crystal structure, morphology, luminescence, adsorptive and photocatalytic properties of ZnO powders was carried out. The addition of PVP in initial aqueous solutions of zinc nitrate determines the remarkable change of powder morphology and decreases the average size of ZnO nanocrystals. Luminescence spectra in the visible spectral range indicate the significant difference of structural defects types in grainy and porous powders. Porous powders demonstrate high ability for singlet oxygen photogeneration and photocatalytic properties. The kinetics of diazo dye adsorption on both powders is described successfully by the kinetic equation of pseudo-second order. Kinetic dependencies of photocatalytic oxidation of Chicago Sky Blue diazo dye using as grain ZnO powder so as porous ZnO powders are described by the Langmuir–Hinshelwood model but process rates are different. Porous ZnO powder demonstrates strong ability for photogeneration of singlet oxygen under visible irradiation and high photocatalytic properties (rate constant 0.042 min−1).","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics-Switzerland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ceramics6030103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The grainy and porous ZnO powders were synthesized by thermal decomposition of zinc nitrate and polymer-salt method. The comparative study of the crystal structure, morphology, luminescence, adsorptive and photocatalytic properties of ZnO powders was carried out. The addition of PVP in initial aqueous solutions of zinc nitrate determines the remarkable change of powder morphology and decreases the average size of ZnO nanocrystals. Luminescence spectra in the visible spectral range indicate the significant difference of structural defects types in grainy and porous powders. Porous powders demonstrate high ability for singlet oxygen photogeneration and photocatalytic properties. The kinetics of diazo dye adsorption on both powders is described successfully by the kinetic equation of pseudo-second order. Kinetic dependencies of photocatalytic oxidation of Chicago Sky Blue diazo dye using as grain ZnO powder so as porous ZnO powders are described by the Langmuir–Hinshelwood model but process rates are different. Porous ZnO powder demonstrates strong ability for photogeneration of singlet oxygen under visible irradiation and high photocatalytic properties (rate constant 0.042 min−1).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔陶瓷ZnO纳米粒子的光致发光、吸附和光催化性能
采用硝酸锌热分解法和聚合物盐法合成了粒状多孔ZnO粉体。对ZnO粉末的晶体结构、形貌、发光、吸附和光催化性能进行了比较研究。在硝酸锌的初始水溶液中加入PVP决定了粉末形态的显著变化,并降低了ZnO纳米晶体的平均尺寸。可见光谱范围内的发光光谱表明粒状粉末和多孔粉末中结构缺陷类型的显著差异。多孔粉末表现出高的单线态氧光生能力和光催化性能。用拟二阶动力学方程成功地描述了重氮染料在两种粉末上的吸附动力学。采用Langmuir–Hinshelwood模型描述了使用颗粒状ZnO粉末和多孔ZnO粉末光催化氧化芝加哥天蓝重氮染料的动力学依赖性,但过程速率不同。多孔ZnO粉末在可见光照射下表现出较强的单重态氧光生能力和较高的光催化性能(速率常数0.042 min−1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
66
审稿时长
10 weeks
期刊最新文献
Non-Invasive On-Site XRF and Raman Classification and Dating of Ancient Ceramics: Application to 18th and 19th Century Meissen Porcelain (Saxony) and Comparison with Chinese Porcelain Biomechanical Behavior of Lithium-Disilicate-Modified Endocrown Restorations: A Three-Dimensional Finite Element Analysis Preparation and Characterization of Freeze-Dried β-Tricalcium Phosphate/Barium Titanate/Collagen Composite Scaffolds for Bone Tissue Engineering in Orthopedic Applications Ceramic Filters for the Efficient Removal of Azo Dyes and Pathogens in Water Bioinspired Mechanical Materials—Development of High-Toughness Ceramics through Complexation of Calcium Phosphate and Organic Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1