Oxidation of arsenite to arsenate on birnessite in the presence of light

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Geochemical Transactions Pub Date : 2016-10-06 DOI:10.1186/s12932-016-0037-5
Samantha L. Shumlas, Soujanya Singireddy, Akila C. Thenuwara, Nuwan H. Attanayake, Richard J. Reeder, Daniel R. Strongin
{"title":"Oxidation of arsenite to arsenate on birnessite in the presence of light","authors":"Samantha L. Shumlas,&nbsp;Soujanya Singireddy,&nbsp;Akila C. Thenuwara,&nbsp;Nuwan H. Attanayake,&nbsp;Richard J. Reeder,&nbsp;Daniel R. Strongin","doi":"10.1186/s12932-016-0037-5","DOIUrl":null,"url":null,"abstract":"<p>The effect of simulated solar radiation on the oxidation of arsenite [As(III)] to arsenate [As(V)] on the layered manganese oxide, birnessite, was investigated. Experiments were conducted where birnessite suspensions, under both anoxic and oxic conditions, were irradiated with simulated solar radiation in the presence of As(III) at pH 5, 7, and 9. X-ray absorption spectroscopy (XAS) was used to determine the nature of the adsorbed product on the surface of the birnessite. The oxidation of As(III) in the presence of birnessite under simulated solar light irradiation occurred at a rate that was faster than in the absence of light at pH 5. At pH 7 and 9, As(V) production was significantly less than at pH 5 and the amount of As(V) production for a given reaction time was the same under dark and light conditions. The first order rate constant (k<sub>obs</sub>) for As(III) oxidation in the presence of light and in the dark at pH 5 were determined to be 0.07 and 0.04?h<sup>?1</sup>, respectively. The As(V) product was released into solution along with Mn(II), with the latter product resulting from the reduction of Mn(IV) and/or Mn(III) during the As(III) oxidation process. Post-reaction XAS analysis of As(III) exposed birnessite showed that arsenic was present on the surface as As(V). Experimental results also showed no evidence that reactive oxygen species played a role in the As(III) oxidation process.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"17 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2016-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-016-0037-5","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Transactions","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s12932-016-0037-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 25

Abstract

The effect of simulated solar radiation on the oxidation of arsenite [As(III)] to arsenate [As(V)] on the layered manganese oxide, birnessite, was investigated. Experiments were conducted where birnessite suspensions, under both anoxic and oxic conditions, were irradiated with simulated solar radiation in the presence of As(III) at pH 5, 7, and 9. X-ray absorption spectroscopy (XAS) was used to determine the nature of the adsorbed product on the surface of the birnessite. The oxidation of As(III) in the presence of birnessite under simulated solar light irradiation occurred at a rate that was faster than in the absence of light at pH 5. At pH 7 and 9, As(V) production was significantly less than at pH 5 and the amount of As(V) production for a given reaction time was the same under dark and light conditions. The first order rate constant (kobs) for As(III) oxidation in the presence of light and in the dark at pH 5 were determined to be 0.07 and 0.04?h?1, respectively. The As(V) product was released into solution along with Mn(II), with the latter product resulting from the reduction of Mn(IV) and/or Mn(III) during the As(III) oxidation process. Post-reaction XAS analysis of As(III) exposed birnessite showed that arsenic was present on the surface as As(V). Experimental results also showed no evidence that reactive oxygen species played a role in the As(III) oxidation process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在光的作用下,砷酸盐在硼铁矿上氧化成砷酸盐
研究了模拟太阳辐射对亚砷酸盐[As(III)]在层状氧化锰矿上氧化为砷酸盐[As(V)]的影响。在缺氧和缺氧条件下,在pH为5、7和9的As(III)存在下,用模拟太阳辐射照射birnite悬浮液。采用x射线吸收光谱法(XAS)测定吸附产物的性质。在模拟太阳光照下,在有birnite存在的情况下,As(III)的氧化速度比在pH 5无光照的情况下更快。在pH为7和9时,As(V)的产量明显低于pH为5时,在相同的反应时间内,在黑暗和光照条件下As(V)的产量是相同的。测定了As(III)在光照下和pH 5下的氧化一级速率常数(kobs)分别为0.07和0.04 h?1,分别。As(V)产物与Mn(II)一起释放到溶液中,后者是As(III)氧化过程中Mn(IV)和/或Mn(III)的还原产物。砷(III)暴露的birnite的反应后XAS分析表明,砷以As(V)的形式存在于其表面。实验结果也表明,没有证据表明活性氧在As(III)氧化过程中起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochemical Transactions
Geochemical Transactions 地学-地球化学与地球物理
CiteScore
3.70
自引率
4.30%
发文量
2
审稿时长
>12 weeks
期刊介绍: Geochemical Transactions publishes high-quality research in all areas of chemistry as it relates to materials and processes occurring in terrestrial and extraterrestrial systems.
期刊最新文献
Silicate coprecipitation reduces green rust crystal size and limits dissolution-precipitation during air oxidation Development of the Arabian-Nubian Shield along the Marsa Alam-Idfu transect, Central-Eastern Desert, Egypt: geochemical implementation of zircon U-Pb geochronology Probing atomic-scale processes at the ferrihydrite-water interface with reactive molecular dynamics Water quality assessment of Upper Ganga and Yamuna river systems during COVID-19 pandemic-induced lockdown: imprints of river rejuvenation Effect of Mn2+ concentration on the growth of δ-MnO2 crystals under acidic conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1