{"title":"Estimation of high-dimensional dynamic conditional precision matrices with an application to forecast combination","authors":"Tae-Hwy Lee, Millie Yi Mao, A. Ullah","doi":"10.1080/07474938.2021.1889208","DOIUrl":null,"url":null,"abstract":"Abstract The estimation of a large covariance matrix is challenging when the dimension p is large relative to the sample size n. Common approaches to deal with the challenge have been based on thresholding or shrinkage methods in estimating covariance matrices. However, in many applications (e.g., regression, forecast combination, portfolio selection), what we need is not the covariance matrix but its inverse (the precision matrix). In this paper we introduce a method of estimating the high-dimensional “dynamic conditional precision” (DCP) matrices. The proposed DCP algorithm is based on the estimator of a large unconditional precision matrix to deal with the high-dimension and the dynamic conditional correlation (DCC) model to embed a dynamic structure to the conditional precision matrix. The simulation results show that the DCP method performs substantially better than the methods of estimating covariance matrices based on thresholding or shrinkage methods. Finally, we examine the “forecast combination puzzle” using the DCP, thresholding, and shrinkage methods.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"40 1","pages":"905 - 918"},"PeriodicalIF":0.8000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474938.2021.1889208","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2021.1889208","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The estimation of a large covariance matrix is challenging when the dimension p is large relative to the sample size n. Common approaches to deal with the challenge have been based on thresholding or shrinkage methods in estimating covariance matrices. However, in many applications (e.g., regression, forecast combination, portfolio selection), what we need is not the covariance matrix but its inverse (the precision matrix). In this paper we introduce a method of estimating the high-dimensional “dynamic conditional precision” (DCP) matrices. The proposed DCP algorithm is based on the estimator of a large unconditional precision matrix to deal with the high-dimension and the dynamic conditional correlation (DCC) model to embed a dynamic structure to the conditional precision matrix. The simulation results show that the DCP method performs substantially better than the methods of estimating covariance matrices based on thresholding or shrinkage methods. Finally, we examine the “forecast combination puzzle” using the DCP, thresholding, and shrinkage methods.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.