Zhao Xin-gang, Lu Wenjie, Wang Wei, Hu Shuran, Zuo Yi
{"title":"How to optimize allocation of renewable portfolio standards for renewable energy development in China?","authors":"Zhao Xin-gang, Lu Wenjie, Wang Wei, Hu Shuran, Zuo Yi","doi":"10.1063/5.0135705","DOIUrl":null,"url":null,"abstract":"A renewable portfolio standard is implemented to promote the development of renewable energy at a minimum cost through tradable green certificate market mechanism. Formulating a scientific and feasible renewable energy quota allocation scheme helps RPS function smoothly and optimize resource allocation. This paper proposed a bi-level programming model combined with entropy weight method to allocate renewable portfolio standard quotas with provincial heterogeneity and stakeholders' behavior, and an optimized quota allocation scheme among China's 30 provinces in 2020 was obtained. By comparing with the government's issued scheme, the following were the results under the optimized scheme: (1) Quotas in most provinces have increased, and the responsibility for renewable electricity generation is shared with the provinces with developed economy and well-constructed transmission facilities, where electricity producers can meet the quotas by purchasing tradable green certificate. (2) Quota allocation has positive effects on energy, economy, and environment. Specifically, the non-hydro renewable electricity generation increased by 43.8%, the non-hydro renewable electricity producers' profit increased by 18.4%, and the environmental pollution cost reduced by 27.9%. (3) Quota allocation equity measured by the environmental Gini coefficient increased by 14.3%. Based on these findings, some policy implications related to quota allocation and renewable portfolio standard's institutional arrangement have been put forward.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0135705","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
A renewable portfolio standard is implemented to promote the development of renewable energy at a minimum cost through tradable green certificate market mechanism. Formulating a scientific and feasible renewable energy quota allocation scheme helps RPS function smoothly and optimize resource allocation. This paper proposed a bi-level programming model combined with entropy weight method to allocate renewable portfolio standard quotas with provincial heterogeneity and stakeholders' behavior, and an optimized quota allocation scheme among China's 30 provinces in 2020 was obtained. By comparing with the government's issued scheme, the following were the results under the optimized scheme: (1) Quotas in most provinces have increased, and the responsibility for renewable electricity generation is shared with the provinces with developed economy and well-constructed transmission facilities, where electricity producers can meet the quotas by purchasing tradable green certificate. (2) Quota allocation has positive effects on energy, economy, and environment. Specifically, the non-hydro renewable electricity generation increased by 43.8%, the non-hydro renewable electricity producers' profit increased by 18.4%, and the environmental pollution cost reduced by 27.9%. (3) Quota allocation equity measured by the environmental Gini coefficient increased by 14.3%. Based on these findings, some policy implications related to quota allocation and renewable portfolio standard's institutional arrangement have been put forward.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy