Multi-Task Feature Selection for Speech Emotion Recognition: Common Speaker-Independent Features Among Emotions

E. Kalhor, B. Bakhtiari
{"title":"Multi-Task Feature Selection for Speech Emotion Recognition: Common Speaker-Independent Features Among Emotions","authors":"E. Kalhor, B. Bakhtiari","doi":"10.22044/JADM.2021.9800.2118","DOIUrl":null,"url":null,"abstract":"Feature selection is the one of the most important steps in designing speech emotion recognition systems. Because there is uncertainty as to which speech feature is related to which emotion, many features must be taken into account and, for this purpose, identifying the most discriminative features is necessary. In the interest of selecting appropriate emotion-related speech features, the current paper focuses on a multi-task approach. For this reason, the study considers each speaker as a task and proposes a multi-task objective function to select features. As a result, the proposed method chooses one set of speaker-independent features of which the selected features are discriminative in all emotion classes. Correspondingly, multi-class classifiers are utilized directly or binary classifications simply perform multi-class classifications. In addition, the present work employs two well-known datasets, the Berlin and Enterface. The experiments also applied the openSmile toolkit to extract more than 6500 features. After feature selection phase, the results illustrated that the proposed method selects the features which is common in the different runs. Also, the runtime of proposed method is the lowest in comparison to other methods. Finally, 7 classifiers are employed and the best achieved performance is 73.76% for the Berlin dataset and 72.17% for the Enterface dataset, in the faced of a new speaker .These experimental results then show that the proposed method is superior to existing state-of-the-art methods.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2021.9800.2118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature selection is the one of the most important steps in designing speech emotion recognition systems. Because there is uncertainty as to which speech feature is related to which emotion, many features must be taken into account and, for this purpose, identifying the most discriminative features is necessary. In the interest of selecting appropriate emotion-related speech features, the current paper focuses on a multi-task approach. For this reason, the study considers each speaker as a task and proposes a multi-task objective function to select features. As a result, the proposed method chooses one set of speaker-independent features of which the selected features are discriminative in all emotion classes. Correspondingly, multi-class classifiers are utilized directly or binary classifications simply perform multi-class classifications. In addition, the present work employs two well-known datasets, the Berlin and Enterface. The experiments also applied the openSmile toolkit to extract more than 6500 features. After feature selection phase, the results illustrated that the proposed method selects the features which is common in the different runs. Also, the runtime of proposed method is the lowest in comparison to other methods. Finally, 7 classifiers are employed and the best achieved performance is 73.76% for the Berlin dataset and 72.17% for the Enterface dataset, in the faced of a new speaker .These experimental results then show that the proposed method is superior to existing state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语音情感识别的多任务特征选择:情感中常见的说话人无关特征
特征选择是设计语音情感识别系统的重要步骤之一。由于哪一种语音特征与哪一种情绪相关存在不确定性,因此必须考虑许多特征,为此,确定最具区别性的特征是必要的。为了选择合适的情绪相关语音特征,本文着重研究了一种多任务方法。因此,本研究将每个说话人视为一个任务,并提出了一个多任务目标函数来选择特征。结果表明,该方法选择了一组与说话人无关的特征,所选特征在所有情绪类别中都具有区别性。相应地,直接使用多类分类器或二元分类简单地进行多类分类。此外,本研究采用了两个著名的数据集,Berlin和Enterface。实验还应用openSmile工具包提取了6500多个特征。经过特征选择阶段,结果表明所提出的方法选择了在不同运行中常见的特征。与其他方法相比,该方法的运行时间最短。最后,使用了7个分类器,在面对新说话者时,Berlin数据集和Enterface数据集的最佳识别率分别为73.76%和72.17%。实验结果表明,本文提出的方法优于现有的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Nasal Breath Input: Exploring Nasal Breath Input Method for Hands-Free Input by Using a Glasses Type Device with Piezoelectric Elements Sentiment Mining and Analysis over Text Corpora via Complex Deep Learning Naural Architectures An Intelligent Model for Prediction of In-Vitro Fertilization Success using MLP Neural Network and GA Optimization Robust Vein Recognition against Rotation Using Kernel Sparse Representation Improving Speed and Efficiency of Dynamic Programming Methods through Chaos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1