Seasonal shifts in diel vertical migrations by lake-dwelling coastal cutthroat trout, Oncorhynchus clarkii clarkii, reflect thermal regimes and prey distributions
Zachary R. Thomas, David A. Beauchamp, Casey P. Clark, Thomas P. Quinn
{"title":"Seasonal shifts in diel vertical migrations by lake-dwelling coastal cutthroat trout, Oncorhynchus clarkii clarkii, reflect thermal regimes and prey distributions","authors":"Zachary R. Thomas, David A. Beauchamp, Casey P. Clark, Thomas P. Quinn","doi":"10.1111/eff.12725","DOIUrl":null,"url":null,"abstract":"<p>Lakes provide important habitat for salmonids that may use them as a primary feeding area between periods of reproduction. The seasonal changes in vertical thermal structure in lakes can affect the distribution of salmonids on seasonal and diel time scales as they search for, consume, and digest prey that also exploits the water column's distribution of food, temperature and light. Our goal was to analyse the vertical distribution of wild, native coastal cutthroat trout (<i>Oncorhynchus clarkii clarkii</i>) in Lake Washington on daily and seasonal time scales. This lake is stratified in the summer and isothermal in winter, allowing us to compare vertical movements between periods with and without thermal structure in water 50 m deep. We predicted that trout would be deeper in the water column during stratified months and shallower during isothermal months, and shallower at night than in the day. Overall, the trout showed these patterns in the depths and temperatures they occupied, tending to be within or below the thermocline in the summer but not in the coolest water available, and closer to the surface when the lake was isothermal. The trout were also closer to the surface at night and deeper during the day. The vertical range of these diel movements shifted with the seasons–deepest in October, as the thermocline deepened and weakened, and shallowest in January when the lake was isothermal. These seasonal and diel vertical distribution patterns by the trout optimise metabolism for growth, and facilitate feeding on planktivorous fishes that also show seasonal and diel vertical distribution changes.</p>","PeriodicalId":11422,"journal":{"name":"Ecology of Freshwater Fish","volume":"32 4","pages":"842-851"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology of Freshwater Fish","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eff.12725","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 1
Abstract
Lakes provide important habitat for salmonids that may use them as a primary feeding area between periods of reproduction. The seasonal changes in vertical thermal structure in lakes can affect the distribution of salmonids on seasonal and diel time scales as they search for, consume, and digest prey that also exploits the water column's distribution of food, temperature and light. Our goal was to analyse the vertical distribution of wild, native coastal cutthroat trout (Oncorhynchus clarkii clarkii) in Lake Washington on daily and seasonal time scales. This lake is stratified in the summer and isothermal in winter, allowing us to compare vertical movements between periods with and without thermal structure in water 50 m deep. We predicted that trout would be deeper in the water column during stratified months and shallower during isothermal months, and shallower at night than in the day. Overall, the trout showed these patterns in the depths and temperatures they occupied, tending to be within or below the thermocline in the summer but not in the coolest water available, and closer to the surface when the lake was isothermal. The trout were also closer to the surface at night and deeper during the day. The vertical range of these diel movements shifted with the seasons–deepest in October, as the thermocline deepened and weakened, and shallowest in January when the lake was isothermal. These seasonal and diel vertical distribution patterns by the trout optimise metabolism for growth, and facilitate feeding on planktivorous fishes that also show seasonal and diel vertical distribution changes.
期刊介绍:
Ecology of Freshwater Fish publishes original contributions on all aspects of fish ecology in freshwater environments, including lakes, reservoirs, rivers, and streams. Manuscripts involving ecologically-oriented studies of behavior, conservation, development, genetics, life history, physiology, and host-parasite interactions are welcomed. Studies involving population ecology and community ecology are also of interest, as are evolutionary approaches including studies of population biology, evolutionary ecology, behavioral ecology, and historical ecology. Papers addressing the life stages of anadromous and catadromous species in estuaries and inshore coastal zones are considered if they contribute to the general understanding of freshwater fish ecology. Theoretical and modeling studies are suitable if they generate testable hypotheses, as are those with implications for fisheries. Manuscripts presenting analyses of published data are considered if they produce novel conclusions or syntheses. The journal publishes articles, fresh perspectives, and reviews and, occasionally, the proceedings of conferences and symposia.