Detecting Unobserved Heterogeneity in Efficient Prices via Classifier-Lasso

IF 2.9 2区 数学 Q1 ECONOMICS Journal of Business & Economic Statistics Pub Date : 2022-02-01 DOI:10.1080/07350015.2022.2036613
Wenxin Huang, Liangjun Su, Yuan Zhuang
{"title":"Detecting Unobserved Heterogeneity in Efficient Prices via Classifier-Lasso","authors":"Wenxin Huang, Liangjun Su, Yuan Zhuang","doi":"10.1080/07350015.2022.2036613","DOIUrl":null,"url":null,"abstract":"Abstract This article proposes a new measure of efficient price as a weighted average of bid and ask prices, where the weights are constructed from the bid-ask long-run relationships in a panel error-correction model (ECM). To allow for heterogeneity in the long-run relationships, we consider a panel ECM with latent group structures so that all the stocks within a group share the same long-run relationship and do not otherwise. We extend the Classifier-Lasso method to the ECM to simultaneously identify the individual’s group membership and estimate the group-specific long-run relationship. We establish the uniform classification consistency and good asymptotic properties of the post-Lasso estimators under some regularity conditions. Empirically, we find that more than 30% of the Standard & Poor’s (S&P) 1500 stocks have estimated efficient prices significantly deviating from the midpoint—a conventional measure of efficient price. Such deviations explored from our data-driven method can provide dynamic information on the extent and direction of informed trading activities.","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":"41 1","pages":"509 - 522"},"PeriodicalIF":2.9000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2036613","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This article proposes a new measure of efficient price as a weighted average of bid and ask prices, where the weights are constructed from the bid-ask long-run relationships in a panel error-correction model (ECM). To allow for heterogeneity in the long-run relationships, we consider a panel ECM with latent group structures so that all the stocks within a group share the same long-run relationship and do not otherwise. We extend the Classifier-Lasso method to the ECM to simultaneously identify the individual’s group membership and estimate the group-specific long-run relationship. We establish the uniform classification consistency and good asymptotic properties of the post-Lasso estimators under some regularity conditions. Empirically, we find that more than 30% of the Standard & Poor’s (S&P) 1500 stocks have estimated efficient prices significantly deviating from the midpoint—a conventional measure of efficient price. Such deviations explored from our data-driven method can provide dynamic information on the extent and direction of informed trading activities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用分类器套索检测有效价格的未观察异质性
摘要本文提出了一种新的有效价格度量方法,即买卖价格的加权平均,其中权重由面板误差修正模型(ECM)中的买卖长期关系构造而成。为了考虑长期关系中的异质性,我们考虑了一个具有潜在群体结构的面板ECM,以便群体内的所有股票共享相同的长期关系,而不是其他关系。我们将分类器-套索方法扩展到ECM,以同时识别个体的群体成员身份和估计群体特定的长期关系。在一些正则性条件下,我们建立了后lasso估计的一致分类一致性和良好的渐近性质。根据经验,我们发现标准普尔(S&P) 1500只股票中,超过30%的有效价格估计明显偏离了中点——有效价格的传统衡量标准。从我们的数据驱动方法中发现的这种偏差可以提供有关知情交易活动的程度和方向的动态信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Business & Economic Statistics
Journal of Business & Economic Statistics 数学-统计学与概率论
CiteScore
5.00
自引率
6.70%
发文量
98
审稿时长
>12 weeks
期刊介绍: The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.
期刊最新文献
A Ridge-Regularized Jackknifed Anderson-Rubin Test. Efficient and Robust Estimation of the Generalized LATE Model Modeling and Forecasting Macroeconomic Downside Risk* Causal inference under outcome-based sampling with monotonicity assumptions Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1