Parameters and properties for the preparation of Cu nanocolloids containing polyvinyl alcohol using the electrical spark discharge method

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanomaterials and Nanotechnology Pub Date : 2021-01-01 DOI:10.1177/18479804211035190
K. Tseng, Han Ke, Hsueh-Chien Ku
{"title":"Parameters and properties for the preparation of Cu nanocolloids containing polyvinyl alcohol using the electrical spark discharge method","authors":"K. Tseng, Han Ke, Hsueh-Chien Ku","doi":"10.1177/18479804211035190","DOIUrl":null,"url":null,"abstract":"Through the use of an electric discharge machine, this study performed the electrical spark discharge method in deionised water under normal temperature and pressure for Cu nanocolloid (CuNC) preparation. The CuNCs had a zeta potential of 12.3 mV, indicating poor suspension stability. The suspension stability was effectively increased (zeta potential 32.5 mV) through the addition of polyvinyl alcohol (PVA) to form PVA-containing CuNCs PVA/CuNCs. Next, the following pulse-width modulation (Ton:Toff) parameters were tested to determine the optimal setting for PVA/CuNC preparation: 10:10, 30:30, 50:50, 70:70 and 90:90 µs. The optimal preparation parameter was then determined according to the absorbance, zeta potential and size distribution results. Finally, the surface properties and crystal structure of the PVA/CuNCs were characterised through transmission electron microscopy (TEM) and X-ray diffraction (XRD). When the Ton:Toff was set to 30:30 µs, preparation efficiency was optimal, as was suspension stability, as indicated by the absorbance value (0.534), zeta potential (32.5 mV) and size distribution (85.47 nm). Transmission electron microscopy revealed that Cu nanoparticles that were more dispersed in the PVA/CuNCs had a diameter smaller than 10 nm and a crystal line width of 0.2028 nm. X-ray diffraction showed that the PVA/CuNCs contained intact Cu crystal structures.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/18479804211035190","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Through the use of an electric discharge machine, this study performed the electrical spark discharge method in deionised water under normal temperature and pressure for Cu nanocolloid (CuNC) preparation. The CuNCs had a zeta potential of 12.3 mV, indicating poor suspension stability. The suspension stability was effectively increased (zeta potential 32.5 mV) through the addition of polyvinyl alcohol (PVA) to form PVA-containing CuNCs PVA/CuNCs. Next, the following pulse-width modulation (Ton:Toff) parameters were tested to determine the optimal setting for PVA/CuNC preparation: 10:10, 30:30, 50:50, 70:70 and 90:90 µs. The optimal preparation parameter was then determined according to the absorbance, zeta potential and size distribution results. Finally, the surface properties and crystal structure of the PVA/CuNCs were characterised through transmission electron microscopy (TEM) and X-ray diffraction (XRD). When the Ton:Toff was set to 30:30 µs, preparation efficiency was optimal, as was suspension stability, as indicated by the absorbance value (0.534), zeta potential (32.5 mV) and size distribution (85.47 nm). Transmission electron microscopy revealed that Cu nanoparticles that were more dispersed in the PVA/CuNCs had a diameter smaller than 10 nm and a crystal line width of 0.2028 nm. X-ray diffraction showed that the PVA/CuNCs contained intact Cu crystal structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电火花放电法制备聚乙烯醇铜纳米胶体的参数和性能
本研究利用放电机器,在常温常压下,在去离子水中进行了电火花放电法制备铜纳米胶体(CuNC)。CuNC的ζ电位为12.3mV,表明悬浮液稳定性差。通过添加聚乙烯醇(PVA)形成含有PVA的CuNCs PVA/CuNCs,悬浮液的稳定性有效地提高(ζ电位32.5mV)。接下来,测试以下脉宽调制(Ton:Toff)参数,以确定PVA/CuNC制备的最佳设置:10:10、30:30、50:50、70:70和90:90µs。然后根据吸光度、ζ电位和粒度分布结果确定最佳制备参数。最后,通过透射电子显微镜(TEM)和X射线衍射(XRD)对PVA/CuNCs的表面性质和晶体结构进行了表征。当Ton:Toff设置为30:30µs时,制备效率最佳,悬浮液稳定性最佳,如吸光度值(0.534)、ζ电位(32.5mV)和尺寸分布(85.47nm)所示。透射电子显微镜显示,更分散在PVA/CuNC中的Cu纳米颗粒具有小于10nm的直径和0.2028nm的结晶线宽。X射线衍射表明,PVA/CuNCs含有完整的Cu晶体结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials and Nanotechnology
Nanomaterials and Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.20
自引率
21.60%
发文量
13
审稿时长
15 weeks
期刊介绍: Nanomaterials and Nanotechnology is a JCR ranked, peer-reviewed open access journal addressed to a cross-disciplinary readership including scientists, researchers and professionals in both academia and industry with an interest in nanoscience and nanotechnology. The scope comprises (but is not limited to) the fundamental aspects and applications of nanoscience and nanotechnology
期刊最新文献
Grewia tenax-Mediated Silver Nanoparticles as Efficient Antibacterial and Antifungal Agents Material Removal Mechanism and Evolution of Subsurface Defects during Nanocutting of Monocrystalline Cu Rapid Colorimetric Detection of Hg (II) Based on Hg (II)-Induced Suppressed Enzyme-Like Reduction of 4-Nitrophenol by Au@ZnO/Fe3O4 in a Cosmetic Skin Product Nanomaterials in Nanophotonics Structure for Performing All-Optical 2 × 1 Multiplexer Based on Elliptical IMI-Plasmonic Waveguides Low Dimension Elemental and van der Waals Hetetostructures Materials including C Nanostructures and Perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1