Adherent Moving of Polymers in Spherical Confined Binary Semiflexible Ring Polymer Mixtures

Xiaolin Zhou, Wan Wei
{"title":"Adherent Moving of Polymers in Spherical Confined Binary Semiflexible Ring Polymer Mixtures","authors":"Xiaolin Zhou, Wan Wei","doi":"10.3390/biophysica2040044","DOIUrl":null,"url":null,"abstract":"Based on the coarse-grained model, we used molecular dynamics methods to calculate and simulate a semiflexible long ring–semiflexible short ring blended polymer system confined in a hard sphere. We systematically studied the distribution and motion characteristics of the long ring chain. The results show that when the short ring is short enough (Lshort < 20), the long ring (Llong = 50) is separated from the blend system and then distributed against the inner wall. As the length of the short ring increases (Lshort ≥ 20), the long ring can no longer be separated from the blending system. Moreover, we found that the long ring demonstrates a random direction of adherent walking behavior on the inner surface of the hard sphere. The velocity of the long ring decreases with the increase in the short ring length Lshort. Specifically for Lshort ≥ 20, the system does not undergo phase separation and the speed of the long ring decreases sharply along with the long ring distributed inside the confined bulk. This is related to the inner wall layer moving faster than the inside bulk of the restricted system. Our simulation results can help us to understand the distribution of macromolecules in biological systems in confined systems, including the restricted chromosome partitioning distribution and packing structure of circular DNA molecules.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biophysica2040044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the coarse-grained model, we used molecular dynamics methods to calculate and simulate a semiflexible long ring–semiflexible short ring blended polymer system confined in a hard sphere. We systematically studied the distribution and motion characteristics of the long ring chain. The results show that when the short ring is short enough (Lshort < 20), the long ring (Llong = 50) is separated from the blend system and then distributed against the inner wall. As the length of the short ring increases (Lshort ≥ 20), the long ring can no longer be separated from the blending system. Moreover, we found that the long ring demonstrates a random direction of adherent walking behavior on the inner surface of the hard sphere. The velocity of the long ring decreases with the increase in the short ring length Lshort. Specifically for Lshort ≥ 20, the system does not undergo phase separation and the speed of the long ring decreases sharply along with the long ring distributed inside the confined bulk. This is related to the inner wall layer moving faster than the inside bulk of the restricted system. Our simulation results can help us to understand the distribution of macromolecules in biological systems in confined systems, including the restricted chromosome partitioning distribution and packing structure of circular DNA molecules.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚合物在球形约束二元半柔性环聚合物混合物中的粘附运动
基于粗粒模型,我们使用分子动力学方法计算和模拟了一个半柔性长环-半柔性短环混合聚合物系统,该系统被限制在一个硬球中。我们系统地研究了长环链的分布和运动特性。结果表明,当短环足够短(Lshort<20)时,长环(Llong=50)从共混体系中分离出来,然后靠着内壁分布。随着短环长度的增加(Lshort≥20),长环不能再与共混体系分离。此外,我们发现长环在硬球的内表面上表现出粘附行走行为的随机方向。长环的速度随着短环长度Lshort的增加而减小。特别是当Lshort≥20时,系统不发生相分离,长环的速度随着分布在受限体积内的长环而急剧下降。这与内壁层比受限制系统的内部体积移动得更快有关。我们的模拟结果可以帮助我们了解生物系统中大分子在受限系统中的分布,包括环状DNA分子的受限染色体分配分布和堆积结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Anion Effect on Phase Separation of Polyethylene Glycol-8000–Sodium Salt Two-Phase Systems Intermolecular FRET Pairs as An Approach to Visualize Specific Enzyme Activity in Model Biomembranes and Living Cells Bay Laurel of Northern Morocco: A Comprehensive Analysis of Its Phytochemical Profile, Mineralogical Composition, and Antioxidant Potential Differential Scanning Calorimetry of Proteins and the Two-State Model: Comparison of Two Formulas Biophysical Breakthroughs Projected for the Phage Therapy of Bacterial Disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1