Efficient Spatial Resampling Using the PDF Similarity

IF 1.4 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Proceedings of the ACM on computer graphics and interactive techniques Pub Date : 2023-05-12 DOI:10.1145/3585501
Yusuke Tokuyoshi
{"title":"Efficient Spatial Resampling Using the PDF Similarity","authors":"Yusuke Tokuyoshi","doi":"10.1145/3585501","DOIUrl":null,"url":null,"abstract":"In real-time rendering, spatiotemporal reservoir resampling (ReSTIR) is a powerful technique to increase the number of candidate samples for resampled importance sampling. However, reusing spatiotemporal samples is not always efficient when target PDFs for the reused samples are dissimilar to the integrand. Target PDFs are often spatially different for highly detailed scenes due to geometry edges, normal maps, spatially varying materials, and shadow edges. This paper introduces a new method of rejecting spatial reuse based on the similarity of PDF shapes for single-bounce path connections (e.g., direct illumination). While existing rejection methods for ReSTIR do not support arbitrary materials and shadow edges, our PDF similarity takes them into account because target PDFs include BSDFs and shadows. In this paper, we present a rough estimation of PDF shapes using von Mises--Fisher distributions and temporal resampling. We also present a stable combination of our rejection method and the existing rejection method, considering estimation errors due to temporal disocclusions and moving light sources. This combination efficiently reduces the error around shadow edges with temporal continuities. By using our method for a ReSTIR variant that reuses shadow ray visibility for the integrand, we can reduce the number of shadow rays while preserving shadow edges.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":" ","pages":"1 - 19"},"PeriodicalIF":1.4000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3585501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

In real-time rendering, spatiotemporal reservoir resampling (ReSTIR) is a powerful technique to increase the number of candidate samples for resampled importance sampling. However, reusing spatiotemporal samples is not always efficient when target PDFs for the reused samples are dissimilar to the integrand. Target PDFs are often spatially different for highly detailed scenes due to geometry edges, normal maps, spatially varying materials, and shadow edges. This paper introduces a new method of rejecting spatial reuse based on the similarity of PDF shapes for single-bounce path connections (e.g., direct illumination). While existing rejection methods for ReSTIR do not support arbitrary materials and shadow edges, our PDF similarity takes them into account because target PDFs include BSDFs and shadows. In this paper, we present a rough estimation of PDF shapes using von Mises--Fisher distributions and temporal resampling. We also present a stable combination of our rejection method and the existing rejection method, considering estimation errors due to temporal disocclusions and moving light sources. This combination efficiently reduces the error around shadow edges with temporal continuities. By using our method for a ReSTIR variant that reuses shadow ray visibility for the integrand, we can reduce the number of shadow rays while preserving shadow edges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用PDF相似性的高效空间重采样
在实时绘制中,时空储层重采样(ReSTIR)是一种强大的技术,可以增加重采样重要性采样的候选样本数量。然而,当重用样本的目标PDF与被积函数不同时,重用时空样本并不总是有效的。由于几何体边缘、法线贴图、空间变化的材质和阴影边缘,对于高度详细的场景,目标PDF通常在空间上不同。本文介绍了一种基于单反弹路径连接(如直接照明)PDF形状相似性的拒绝空间重用的新方法。虽然现有的ReSTIR拒绝方法不支持任意材质和阴影边缘,但我们的PDF相似性将其考虑在内,因为目标PDF包括BSDF和阴影。在本文中,我们提出了一个使用冯-米塞斯-费雪分布和时间重采样的PDF形状的粗略估计。我们还提出了我们的抑制方法和现有抑制方法的稳定组合,考虑到由于时间不遮挡和移动光源引起的估计误差。这种组合有效地减少了具有时间连续性的阴影边缘周围的误差。通过将我们的方法用于ReSTIR变体,该变体重用被积函数的阴影光线可见性,我们可以在保留阴影边的同时减少阴影光线的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Using Deep Learning to Increase Eye-Tracking Robustness, Accuracy, and Precision in Virtual Reality. A Multilevel Active-Set Preconditioner for Box-Constrained Pressure Poisson Solvers Motion In-Betweening with Phase Manifolds NeuroDog A Unified Analysis of Penalty-Based Collision Energies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1