Transport of Fine Sediments in MarineWaterbodies Near River Mouths: Preliminary Results

Grzegorz R. Cerkowniak, M. Kowalewski
{"title":"Transport of Fine Sediments in MarineWaterbodies Near River Mouths: Preliminary Results","authors":"Grzegorz R. Cerkowniak, M. Kowalewski","doi":"10.1515/heem-2018-0016","DOIUrl":null,"url":null,"abstract":"Abstract Transport of fine sediments depends mainly on the efficiency of flocculation. Flocculation, understood as the result of simultaneous processes of aggregation of particles and floc break-up, is a common phenomenon in marine environments. It is typical of fine sediments. This study presents a mathematical model of fine sediment transport. A model of flocculation is an important part of this model. Its main assumption is that flocculation is governed by turbulence. The model was qualitatively tested in a simplified theoretical waterbody. Such factors as the wind direction, wind speed, river discharge and concentration of suspension in the river were investigated. The results show that the proposed model describes reasonably well the lithodynamic processes characteristic of fine flocculating sediments. Thus it seems possible to apply it for description of fine sediment transport under real wave–current conditions that occur in many marine waterbodies near river mouths.","PeriodicalId":53658,"journal":{"name":"Archives of Hydroengineering and Environmental Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Hydroengineering and Environmental Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/heem-2018-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Transport of fine sediments depends mainly on the efficiency of flocculation. Flocculation, understood as the result of simultaneous processes of aggregation of particles and floc break-up, is a common phenomenon in marine environments. It is typical of fine sediments. This study presents a mathematical model of fine sediment transport. A model of flocculation is an important part of this model. Its main assumption is that flocculation is governed by turbulence. The model was qualitatively tested in a simplified theoretical waterbody. Such factors as the wind direction, wind speed, river discharge and concentration of suspension in the river were investigated. The results show that the proposed model describes reasonably well the lithodynamic processes characteristic of fine flocculating sediments. Thus it seems possible to apply it for description of fine sediment transport under real wave–current conditions that occur in many marine waterbodies near river mouths.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
河口附近海洋水体中细小沉积物的输运:初步结果
细粒沉积物的输运主要取决于絮凝效果。絮凝是海洋环境中常见的一种现象,是颗粒聚集和絮体破碎同时发生的结果。它是典型的细沉积物。本文提出了细粒泥沙输运的数学模型。絮凝模型是该模型的重要组成部分。它的主要假设是絮凝是由湍流控制的。在一个简化的理论水体中对模型进行了定性检验。研究了风向、风速、河道流量、河道悬浮物浓度等影响因素。结果表明,该模型较好地描述了细粒絮凝沉积物的岩石动力学过程特征。因此,似乎有可能将其应用于描述发生在河口附近的许多海洋水体中的实际波浪流条件下的细泥沙输运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Hydroengineering and Environmental Mechanics
Archives of Hydroengineering and Environmental Mechanics Environmental Science-Water Science and Technology
CiteScore
1.30
自引率
0.00%
发文量
4
期刊介绍: Archives of Hydro-Engineering and Environmental Mechanics cover the broad area of disciplines related to hydro-engineering, including: hydrodynamics and hydraulics of inlands and sea waters, hydrology, hydroelasticity, ground-water hydraulics, water contamination, coastal engineering, geotechnical engineering, geomechanics, structural mechanics, etc. The main objective of Archives of Hydro-Engineering and Environmental Mechanics is to provide an up-to-date reference to the engineers and scientists engaged in the applications of mechanics to the analysis of various phenomena appearing in the natural environment.
期刊最新文献
Simulation of Pipe Networks Using EPANET to Optimize Water Supply: A Case Study for Arjawinangun Area, Indonesia Experimental Determination of the Relationship between Soil Structure Parameters and Indicators of Water Saturation and Filtration Seismic analysis of Fractured Koyna Concrete Gravity Dam Numerical Analysis of Turbulent Flow over a Backward-facing Step in an Open Channel On the Hydraulic Characteristics of Submerged Flow over Trapezoidal-Shaped Weirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1