{"title":"Effect of long-chain non-coding RNA TUG1 on radiosensitivity of human cervical cancer XB1702 cells by adsorption of miR-145","authors":"Xiuling Liu, Senlin Wang, Zhihong Wang, Jing Li, Xinyu Chen, Quanqin He","doi":"10.3760/CMA.J.ISSN.1004-4221.2019.12.013","DOIUrl":null,"url":null,"abstract":"Objective \nTo evaluate the effect of long-chain non-coding RNA TUG1 on the radiosensitivity of cervical cancer cells and explore its underlying mechanism. \n \n \nMethods \nThe expression of TUG1 and miR-145 in cervical cancer cells XB1702 and normal endometrial stromal cells (ESCs) was detected by qRT-PCR. The transfected si-NC, transfected si-TUG1, transfected si-NC combined with irradiation, transfected si-TUG1 combined with irradiation, si-TUG1 and anti-miR-NC co-transfected and, si-TUG1 and anti-miR-145 co-transfected groups were established, which were transfected into XB1702 cells by liposome method. The survival fraction of each group was detected by colony formation assay. The cell apoptosis of each group was detected by flow cytometry. The fluorescence activity of each group was assessed by dual luciferase reporter gene assay. \n \n \nResults \nCompared with the normal ESCs, the expression of TUG1 was significantly up-regulated, whereas that of miR-145 was significantly down-regulated in the cervical cancer cells XB1702. Silencing TUG1 significantly increased the survival fraction of XB1702 cells, promoted cell apoptosis and enhanced the radiosensitivity of irradiation to XB1702 cells. TUG1 could target and regulate the expression of miR-145. Suppressing miR-145 reversed the silencing effect of TUG1 on inhibiting proliferation, accelerating apoptosis promotion and enhancing sensitization of XB1702 cells. \n \n \nConclusions \nSilencing long-chain non-coding RNA TUG1 can enhance the radiosensitivity of cervical cancer cells. The mechanism may be related to targeting miR-145, which will provide a target for radiotherapy of cervical cancer. \n \n \nKey words: \nTUG1 gene; miR-145 gene; Radiosensitivity; Cervical cancer cell line","PeriodicalId":10288,"journal":{"name":"中华放射肿瘤学杂志","volume":"28 1","pages":"939-941"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华放射肿瘤学杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/CMA.J.ISSN.1004-4221.2019.12.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To evaluate the effect of long-chain non-coding RNA TUG1 on the radiosensitivity of cervical cancer cells and explore its underlying mechanism.
Methods
The expression of TUG1 and miR-145 in cervical cancer cells XB1702 and normal endometrial stromal cells (ESCs) was detected by qRT-PCR. The transfected si-NC, transfected si-TUG1, transfected si-NC combined with irradiation, transfected si-TUG1 combined with irradiation, si-TUG1 and anti-miR-NC co-transfected and, si-TUG1 and anti-miR-145 co-transfected groups were established, which were transfected into XB1702 cells by liposome method. The survival fraction of each group was detected by colony formation assay. The cell apoptosis of each group was detected by flow cytometry. The fluorescence activity of each group was assessed by dual luciferase reporter gene assay.
Results
Compared with the normal ESCs, the expression of TUG1 was significantly up-regulated, whereas that of miR-145 was significantly down-regulated in the cervical cancer cells XB1702. Silencing TUG1 significantly increased the survival fraction of XB1702 cells, promoted cell apoptosis and enhanced the radiosensitivity of irradiation to XB1702 cells. TUG1 could target and regulate the expression of miR-145. Suppressing miR-145 reversed the silencing effect of TUG1 on inhibiting proliferation, accelerating apoptosis promotion and enhancing sensitization of XB1702 cells.
Conclusions
Silencing long-chain non-coding RNA TUG1 can enhance the radiosensitivity of cervical cancer cells. The mechanism may be related to targeting miR-145, which will provide a target for radiotherapy of cervical cancer.
Key words:
TUG1 gene; miR-145 gene; Radiosensitivity; Cervical cancer cell line
期刊介绍:
The Chinese Journal of Radiation Oncology is a national academic journal sponsored by the Chinese Medical Association. It was founded in 1992 and the title was written by Chen Minzhang, the former Minister of Health. Its predecessor was the Chinese Journal of Radiation Oncology, which was founded in 1987. The journal is an authoritative journal in the field of radiation oncology in my country. It focuses on clinical tumor radiotherapy, tumor radiation physics, tumor radiation biology, and thermal therapy. Its main readers are middle and senior clinical doctors and scientific researchers. It is now a monthly journal with a large 16-page format and 80 pages of text. For many years, it has adhered to the principle of combining theory with practice and combining improvement with popularization. It now has columns such as monographs, head and neck tumors (monographs), chest tumors (monographs), abdominal tumors (monographs), physics, technology, biology (monographs), reviews, and investigations and research.