{"title":"Numerical investigation on the vibration reduction of rotating shaft using different groove shapes of tilt bearing","authors":"Ahmed Imad Abbood, F. A. Abdulla","doi":"10.29354/diag/168084","DOIUrl":null,"url":null,"abstract":"Vibration control is very important for high-speed rotors. Oil film damping is considered an effective vibration-damping method, especially for long shafts in gas turbines, ships, and other high-speed rotating equipment. The existing groove in the internal surface of the tilt bearing increases the amount of oil that flows through the bearing; this is more effective in suppressing the vibration of the rotor system carried by the plain bearing. In order to suppress the vibration of the rotor system, which is supported by sliding bearings, a different groove-shaped oil flow (GSOF) is studied and analysed in this paper. A different shape of grooves in bearings was set up and measured to study the vibration-damping effect of the flow oil shape with GSOF. ANSYS software presents significant benefits to engage Fluent for oil flow with Transient structural for vibration measurements. This paper uses these terms to perform the simulation numerically to explore the groove-shaped damper's damping effect under the rotor system. The study identified three enhancements of vibration and settling time. First, the circular groove showed a 35.71% reduction in amplitude and 10% increase in stilling time; the next one is the circular groove which reduced the amplitude by 42.85% and the settling time by 0%. The third modification was the inclined groove which reduced the amplitude by 42.85% and the settling time by 12%. The last one was the triple-inclined groove, which reduced the amplitude and settling time by 57.14% and 20%, respectively.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/168084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Vibration control is very important for high-speed rotors. Oil film damping is considered an effective vibration-damping method, especially for long shafts in gas turbines, ships, and other high-speed rotating equipment. The existing groove in the internal surface of the tilt bearing increases the amount of oil that flows through the bearing; this is more effective in suppressing the vibration of the rotor system carried by the plain bearing. In order to suppress the vibration of the rotor system, which is supported by sliding bearings, a different groove-shaped oil flow (GSOF) is studied and analysed in this paper. A different shape of grooves in bearings was set up and measured to study the vibration-damping effect of the flow oil shape with GSOF. ANSYS software presents significant benefits to engage Fluent for oil flow with Transient structural for vibration measurements. This paper uses these terms to perform the simulation numerically to explore the groove-shaped damper's damping effect under the rotor system. The study identified three enhancements of vibration and settling time. First, the circular groove showed a 35.71% reduction in amplitude and 10% increase in stilling time; the next one is the circular groove which reduced the amplitude by 42.85% and the settling time by 0%. The third modification was the inclined groove which reduced the amplitude by 42.85% and the settling time by 12%. The last one was the triple-inclined groove, which reduced the amplitude and settling time by 57.14% and 20%, respectively.
期刊介绍:
Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.