Numerical analysis of the transport of brine in the Odra River downstream of a mine's discharge

IF 0.7 Q4 MECHANICS Studia Geotechnica et Mechanica Pub Date : 2021-12-01 DOI:10.2478/sgem-2021-0036
Szymon Zieliński, S. Kostecki, P. Stefanek
{"title":"Numerical analysis of the transport of brine in the Odra River downstream of a mine's discharge","authors":"Szymon Zieliński, S. Kostecki, P. Stefanek","doi":"10.2478/sgem-2021-0036","DOIUrl":null,"url":null,"abstract":"Abstract The mining of underground deposits causes the inflow of water to workings and the necessity of pumping them to the surface. The mining plant of KGHM Polska Miedź S.A. extracts copper ore in plant branches with different hydrogeological conditions. The inflowing water into the workings is characterised by variable mineralisation, which depends on the location of the branch. In the south-western part of the deposit, a low-mineralised stream with a relatively high flow rate can be observed, while the outflow of highly saline waters occurs in the north-eastern branch. Despite the activities undertaken that aim at using the pumped-off mine waters industrially, it is necessary to deposit them into the Odra River. Reducing the environmental impact on the Odra River is one of KGHM's goals, which is being implemented by stabilising its salt concentration at a safe level. The paper presents the results of a 3D simulation of brine plume propagation based on a numerical model of advection–diffusion and turbulent flow. Bathymetric data from a section of the river approximately 500 m long and point data from an Odra water quality test were used to develop and validate the model. The paper discusses the types of factors that minimise the impact of brine discharge. The developed model will be used in the future to propose solutions that accelerate the mixing of mine waters with the waters of the Odra River.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2021-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The mining of underground deposits causes the inflow of water to workings and the necessity of pumping them to the surface. The mining plant of KGHM Polska Miedź S.A. extracts copper ore in plant branches with different hydrogeological conditions. The inflowing water into the workings is characterised by variable mineralisation, which depends on the location of the branch. In the south-western part of the deposit, a low-mineralised stream with a relatively high flow rate can be observed, while the outflow of highly saline waters occurs in the north-eastern branch. Despite the activities undertaken that aim at using the pumped-off mine waters industrially, it is necessary to deposit them into the Odra River. Reducing the environmental impact on the Odra River is one of KGHM's goals, which is being implemented by stabilising its salt concentration at a safe level. The paper presents the results of a 3D simulation of brine plume propagation based on a numerical model of advection–diffusion and turbulent flow. Bathymetric data from a section of the river approximately 500 m long and point data from an Odra water quality test were used to develop and validate the model. The paper discusses the types of factors that minimise the impact of brine discharge. The developed model will be used in the future to propose solutions that accelerate the mixing of mine waters with the waters of the Odra River.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矿井排水口下游奥德拉河盐水输送的数值分析
摘要地下矿床的开采导致水流入工作区,并有必要将其泵送至地表。KGHM Polska Miedß美国采矿厂在不同水文地质条件下的工厂分支中提取铜矿。流入工作区的水具有可变矿化特征,这取决于分支的位置。在矿床的西南部,可以观察到具有相对较高流速的低矿化水流,而高盐水的流出发生在东北部支流。尽管开展了旨在将抽离的矿井水用于工业的活动,但仍有必要将其注入奥德拉河。减少对奥德拉河的环境影响是KGHM的目标之一,该目标通过将其盐浓度稳定在安全水平来实现。本文介绍了基于平流-扩散和湍流数值模型的盐水羽流传播的三维模拟结果。使用约500米长河段的水深数据和奥德拉水质测试的点数据来开发和验证该模型。本文讨论了将盐水排放影响降至最低的因素类型。开发的模型将在未来用于提出加速矿井水与奥德拉河混合的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
20
审稿时长
16 weeks
期刊介绍: An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories
期刊最新文献
Modeling of rigid inclusion ground improvements in large-scale geotechnical simulations Seismicity and Tectonics of the Republic of Kosovo Small-strain stiffness of selected anthropogenic aggregates from bender element tests The Role of Spatial Distribution of Geotechnical Soil Parameters in Site Investigation Geometrization of a 3D numerical model of an underground facility based on the results of terrestrial laser scanning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1