MAXIMUM LIKELIHOOD ALGORITHM DETECTS COASTAL WETLAND CHANGES IN TWO CONTRASTING COASTAL WETLANDS IN LOUISIANA

Temitope H. Dauda, Zhu Ning, Y. Twumasi, Opeyemi I. Oladigbolu
{"title":"MAXIMUM LIKELIHOOD ALGORITHM DETECTS COASTAL WETLAND CHANGES IN TWO CONTRASTING COASTAL WETLANDS IN LOUISIANA","authors":"Temitope H. Dauda, Zhu Ning, Y. Twumasi, Opeyemi I. Oladigbolu","doi":"10.5194/isprs-archives-xlviii-m-3-2023-57-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Louisiana coastal wetlands contain about 37 percent of the estuarine herbaceous marshes in the conterminous United States. However, the combined effect of sea level rise and other anthropogenic factors have altered land use land cover over the last few years. This is true for two wetlands in coastal Louisiana, Barataria bay and Wax Lake delta. Barataria Bay, Louisiana, USA has experienced significant land loss. Updated information on the dynamics of change in these wetlands is limited and poorly documented. This information is necessary to develop strategies that will contribute to reversing and halting degradation. Thus, this study employed the Maximum Likelihood classifier on Landsat satellite imagery to assess land use and land cover changes in Barataria Bay and Wax Lake Delta, southeastern Louisiana, USA. The analysis revealed notable alterations in the land cover patterns over the study period. In Barataria Bay, there was a decrease in salt marsh areas with a corresponding increase in open water and Built-up area. In contrast, Wax Lake Delta demonstrated substantial land/wetland growth, with significant expansion of vegetation cover. The Maximum Likelihood classifier demonstrated high accuracy in classifying the land cover types, with an overall accuracy of 86% for Barataria Bay and 92% for Wax Lake Delta. These results highlight the effectiveness of the classifier in accurately identifying and mapping land cover changes in coastal environments. The findings contribute valuable insights for understanding the dynamics of coastal ecosystems and can inform decision-making processes for coastal management and conservation efforts.\n","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-m-3-2023-57-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Louisiana coastal wetlands contain about 37 percent of the estuarine herbaceous marshes in the conterminous United States. However, the combined effect of sea level rise and other anthropogenic factors have altered land use land cover over the last few years. This is true for two wetlands in coastal Louisiana, Barataria bay and Wax Lake delta. Barataria Bay, Louisiana, USA has experienced significant land loss. Updated information on the dynamics of change in these wetlands is limited and poorly documented. This information is necessary to develop strategies that will contribute to reversing and halting degradation. Thus, this study employed the Maximum Likelihood classifier on Landsat satellite imagery to assess land use and land cover changes in Barataria Bay and Wax Lake Delta, southeastern Louisiana, USA. The analysis revealed notable alterations in the land cover patterns over the study period. In Barataria Bay, there was a decrease in salt marsh areas with a corresponding increase in open water and Built-up area. In contrast, Wax Lake Delta demonstrated substantial land/wetland growth, with significant expansion of vegetation cover. The Maximum Likelihood classifier demonstrated high accuracy in classifying the land cover types, with an overall accuracy of 86% for Barataria Bay and 92% for Wax Lake Delta. These results highlight the effectiveness of the classifier in accurately identifying and mapping land cover changes in coastal environments. The findings contribute valuable insights for understanding the dynamics of coastal ecosystems and can inform decision-making processes for coastal management and conservation efforts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最大似然算法检测路易斯安那州两个对比海岸湿地的海岸湿地变化
摘要路易斯安那州沿海湿地约占美国东部河口草本沼泽的37%。然而,在过去几年中,海平面上升和其他人为因素的综合影响改变了土地利用和土地覆盖。路易斯安那州沿海的两个湿地,巴拉塔里亚湾和蜡湖三角洲也是如此。美国路易斯安那州巴拉塔里亚湾发生了严重的土地损失。关于这些湿地变化动态的最新信息有限,而且记录不足。这些信息对于制定有助于扭转和制止退化的战略是必要的。因此,本研究在陆地卫星图像上使用了最大似然分类器来评估美国路易斯安那州东南部巴拉塔里亚湾和蜡湖三角洲的土地利用和土地覆盖变化。分析显示,在研究期间,土地覆盖模式发生了显着变化。在巴拉塔里亚湾,盐沼面积减少,开放水域和堆积区相应增加。相比之下,蜡湖三角洲表现出大量的土地/湿地增长,植被覆盖显著扩大。最大似然分类器在土地覆盖类型分类方面表现出较高的准确性,巴拉塔里亚湾和蜡湖三角洲的总体准确率分别为86%和92%。这些结果突出了分类器在准确识别和绘制沿海环境土地覆盖变化图方面的有效性。这些发现有助于了解沿海生态系统的动态,并为沿海管理和保护工作的决策过程提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
949
审稿时长
16 weeks
期刊最新文献
EVALUATION OF CONSUMER-GRADE AND SURVEY-GRADE UAV-LIDAR EVALUATING GEOMETRY OF AN INDOOR SCENARIO WITH OCCLUSIONS BASED ON TOTAL STATION MEASUREMENTS OF WALL ELEMENTS INVESTIGATION ON THE USE OF NeRF FOR HERITAGE 3D DENSE RECONSTRUCTION FOR INTERIOR SPACES TERRESTRIAL 3D MAPPING OF FORESTS: GEOREFERENCING CHALLENGES AND SENSORS COMPARISONS SPECTRAL ANALYSIS OF IMAGES OF PLANTS UNDER STRESS USING A CLOSE-RANGE CAMERA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1