Numerical modeling of intertidal mudflat profile evolution under waves and currents

IF 1.9 3区 工程技术 Q3 ENGINEERING, CIVIL Coastal Engineering Journal Pub Date : 2022-06-25 DOI:10.1080/21664250.2022.2089445
Paterno S. Miranda, N. Kobayashi
{"title":"Numerical modeling of intertidal mudflat profile evolution under waves and currents","authors":"Paterno S. Miranda, N. Kobayashi","doi":"10.1080/21664250.2022.2089445","DOIUrl":null,"url":null,"abstract":"ABSTRACT The erosional and accretional profile changes of an intertidal mudflat are examined using available field data and the cross-shore numerical model CSHORE that is extended to allow for a mixture of sand and mud. The semidiurnal migration of the still water shoreline and surf zone is resolved numerically to predict the net cross-shore and longshore sediment transport rates influenced by the small cross-shore (undertow) and longshore currents induced by breaking waves of about 0.2 m height. Alongshore sediment loss or gain is included by approximating the alongshore sediment transport gradient using an equivalent alongshore length. The calibrated CSHORE reproduces the measured erosional (accretional) profile change of about 0.1 m (0.1 m) over a cross-shore distance of 950 m during the erosional (accretional) interval of 206 (195) days. The mudflat profile changes are equally affected by mud characteristics, the semidiurnal tide amplitude, and the wave height, period, and direction. In addition, the alongshore water level gradient and wind stress influence longshore current and sediment transport. This study shows the importance of sediment transport in the surf zone that may have been excluded in previous numerical modeling.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21664250.2022.2089445","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The erosional and accretional profile changes of an intertidal mudflat are examined using available field data and the cross-shore numerical model CSHORE that is extended to allow for a mixture of sand and mud. The semidiurnal migration of the still water shoreline and surf zone is resolved numerically to predict the net cross-shore and longshore sediment transport rates influenced by the small cross-shore (undertow) and longshore currents induced by breaking waves of about 0.2 m height. Alongshore sediment loss or gain is included by approximating the alongshore sediment transport gradient using an equivalent alongshore length. The calibrated CSHORE reproduces the measured erosional (accretional) profile change of about 0.1 m (0.1 m) over a cross-shore distance of 950 m during the erosional (accretional) interval of 206 (195) days. The mudflat profile changes are equally affected by mud characteristics, the semidiurnal tide amplitude, and the wave height, period, and direction. In addition, the alongshore water level gradient and wind stress influence longshore current and sediment transport. This study shows the importance of sediment transport in the surf zone that may have been excluded in previous numerical modeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
波浪和海流作用下潮间带泥滩剖面演变的数值模拟
利用现有的野外数据和扩展到允许砂和泥混合的跨岸数值模型CSHORE,研究了潮间带泥滩的侵蚀和增生剖面变化。对静水岸线和冲浪带的半日移进行了数值解析,以预测在约0.2 m高的破浪引起的小滨(底流)和滨流影响下的净跨岸和滨岸输沙率。通过使用等效岸线长度近似岸线输沙梯度,包括岸线输沙损失或增加。校准后的CSHORE重现了在206(195)天的侵蚀(增积)间隔内,在950米的跨海岸距离上测量到的约0.1米(0.1米)的侵蚀(增积)剖面变化。泥滩剖面的变化同样受到泥质特征、半日潮幅、波浪高度、周期和方向的影响。此外,岸线水位梯度和风应力对岸线流输沙也有影响。这项研究显示了在以往的数值模拟中可能被排除在外的冲浪带沉积物输运的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Coastal Engineering Journal
Coastal Engineering Journal 工程技术-工程:大洋
CiteScore
4.60
自引率
8.30%
发文量
0
审稿时长
7.5 months
期刊介绍: Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.
期刊最新文献
Analysis of climate change and climate variability impacts on coastal storms induced by extratropical cyclones: a case study of the August 2015 storm in central Chile Millennial and contemporary dynamics of the barrier estuary entrance at Moruya, SE Australia An automatic shoreline extraction method from SAR imagery using DeepLab-v3+ and its versatility Long-term erosion at the north of Hatiya Island in the Lower Meghna Estuary, Bangladesh Performance Evaluation of XBeach for Seawater-Aquifer Interaction Simulation in Swash Zone of Gravel Beach: An Attempt to Reduce the Phase Errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1