Emerging rechargeable aqueous magnesium ion battery

Mudi Li , Yaxi Ding , Ying Sun , Yujin Ren , Jinzhang Yang , Bosi Yin , Hui Li , Siwen Zhang , Tianyi Ma
{"title":"Emerging rechargeable aqueous magnesium ion battery","authors":"Mudi Li ,&nbsp;Yaxi Ding ,&nbsp;Ying Sun ,&nbsp;Yujin Ren ,&nbsp;Jinzhang Yang ,&nbsp;Bosi Yin ,&nbsp;Hui Li ,&nbsp;Siwen Zhang ,&nbsp;Tianyi Ma","doi":"10.1016/j.matre.2022.100161","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, aqueous rechargeable batteries have played an essential role in developing renewable energy due to the merits of low cost, high security, and high energy density. Among various aqueous-based batteries, aqueous magnesium ion batteries (AMIBs) have rich reserves and high theoretical specific capacity (3833 mAh cm<sup>−3</sup>). However, for future industrialization, AMIBs still face many scientific issues to be solved, such as the slow diffusion of magnesium ions in the material structure, the desolvation penalty at electrode-electrolyte interfaces, the cost of water-in-salt electrolyte, the low voltage of traditional aqueous electrolyte, etc. And yet a comprehensive summary of the components of AMIBs is lacking in the research community. This review mainly introduces the exploration and development of AMIB systems and related components. We conduct an in-depth study of the cathode materials appropriate for magnesium ion batteries from their crystal structures, focusing primarily on layered structures, spinel structures, tunnel structures, and three-dimensional framework structures. We also investigate the anode materials, ranging from inorganic materials to organic materials, as well as the electrolyte materials (from the traditional electrolyte to water-in-salt electrolyte). Finally, some perspectives on ensuing optimization design for future research efforts in the AMIBs field are summarized.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"2 4","pages":"Article 100161"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666935822001082/pdfft?md5=3ece7fccb3ba950d73bf46f996337d70&pid=1-s2.0-S2666935822001082-main.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935822001082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recently, aqueous rechargeable batteries have played an essential role in developing renewable energy due to the merits of low cost, high security, and high energy density. Among various aqueous-based batteries, aqueous magnesium ion batteries (AMIBs) have rich reserves and high theoretical specific capacity (3833 mAh cm−3). However, for future industrialization, AMIBs still face many scientific issues to be solved, such as the slow diffusion of magnesium ions in the material structure, the desolvation penalty at electrode-electrolyte interfaces, the cost of water-in-salt electrolyte, the low voltage of traditional aqueous electrolyte, etc. And yet a comprehensive summary of the components of AMIBs is lacking in the research community. This review mainly introduces the exploration and development of AMIB systems and related components. We conduct an in-depth study of the cathode materials appropriate for magnesium ion batteries from their crystal structures, focusing primarily on layered structures, spinel structures, tunnel structures, and three-dimensional framework structures. We also investigate the anode materials, ranging from inorganic materials to organic materials, as well as the electrolyte materials (from the traditional electrolyte to water-in-salt electrolyte). Finally, some perspectives on ensuing optimization design for future research efforts in the AMIBs field are summarized.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新兴的可充电水性镁离子电池
近年来,水性可充电电池以其低成本、高安全性、高能量密度等优点,在可再生能源的发展中发挥着重要作用。在各种水基电池中,水镁离子电池(AMIBs)储量丰富,理论比容量高达3833 mAh cm−3。然而,对于未来的工业化,amib仍面临许多科学问题需要解决,如镁离子在材料结构中的扩散缓慢,电极-电解质界面的脱溶惩罚,盐中水电解质的成本,传统水性电解质的低电压等。然而,研究界缺乏对amib组成部分的全面总结。本文主要介绍了AMIB系统及其相关组件的探索和发展。本文从镁离子电池正极材料的晶体结构入手,重点研究了层状结构、尖晶石结构、隧道结构和三维框架结构。我们还研究了阳极材料,从无机材料到有机材料,以及电解质材料(从传统电解质到盐包水电解质)。最后,对后续优化设计的一些展望进行了总结,为今后amib领域的研究工作提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
材料导报:能源(英文)
材料导报:能源(英文) Renewable Energy, Sustainability and the Environment, Nanotechnology
CiteScore
13.00
自引率
0.00%
发文量
0
审稿时长
50 days
期刊最新文献
Outside Front Cover Contents Advancements in biomass gasification and catalytic tar-cracking technologies Ionic buffer layer design for stabilizing Zn electrodes in aqueous Zn-based batteries Novel N-doped carbon nanotubes impregnated Mn spheres with polydopamine coating as an efficient polysulfide immobilizer for Li-S batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1