Advanced Classification Techniques for Improving Networks’ Intrusion Detection System Efficiency

IF 1.1 Q3 CRIMINOLOGY & PENOLOGY Journal of Applied Security Research Pub Date : 2021-05-05 DOI:10.1080/19361610.2021.1918500
Mohammed Al-Enazi, Salim El Khediri
{"title":"Advanced Classification Techniques for Improving Networks’ Intrusion Detection System Efficiency","authors":"Mohammed Al-Enazi, Salim El Khediri","doi":"10.1080/19361610.2021.1918500","DOIUrl":null,"url":null,"abstract":"Abstract This research aims to enhance the accuracy and speed of the intrusion detection process by using the feature selection method to reduce the feature space dimensions that eliminate irrelevant features. Further, we employed ensemble learning in the UNSW-NB15 dataset, by using a classifier of the Stacking method, to prevent the intrusion detection system (IDS) from becoming archaic, to adjust it with a modern attack resistance feature, and to make it less costly. We used logistic regression as a meta-classifier and combined random forests, sequential minimal optimization (SMO), and naïve Bayes methods. Our approach allowed us to achieve 97.88% accuracy in intrusion detection.","PeriodicalId":44585,"journal":{"name":"Journal of Applied Security Research","volume":"17 1","pages":"257 - 273"},"PeriodicalIF":1.1000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19361610.2021.1918500","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Security Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19361610.2021.1918500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRIMINOLOGY & PENOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This research aims to enhance the accuracy and speed of the intrusion detection process by using the feature selection method to reduce the feature space dimensions that eliminate irrelevant features. Further, we employed ensemble learning in the UNSW-NB15 dataset, by using a classifier of the Stacking method, to prevent the intrusion detection system (IDS) from becoming archaic, to adjust it with a modern attack resistance feature, and to make it less costly. We used logistic regression as a meta-classifier and combined random forests, sequential minimal optimization (SMO), and naïve Bayes methods. Our approach allowed us to achieve 97.88% accuracy in intrusion detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高网络入侵检测系统效率的高级分类技术
摘要采用特征选择方法降低特征空间维数,剔除不相关特征,提高入侵检测过程的准确性和速度。此外,我们在UNSW-NB15数据集中使用集成学习,通过使用堆叠方法的分类器,防止入侵检测系统(IDS)过时,并使用现代攻击抵抗特征对其进行调整,并使其成本更低。我们使用逻辑回归作为元分类器,并结合随机森林、顺序最小优化(SMO)和naïve贝叶斯方法。我们的方法使我们在入侵检测中达到97.88%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Security Research
Journal of Applied Security Research CRIMINOLOGY & PENOLOGY-
CiteScore
2.90
自引率
15.40%
发文量
35
期刊最新文献
Campus Security and Crime Prevention: A View from a Police Chief with a Ph.D. in Criminology Privacy, Data Protection and Cyber Crimes: Mapping Perceptions of Pakistani Users Theoretical and Experimental Framework for Estimating Cyber Victimization Risk in a Hybrid Physical-Virtual World Cybersecurity Risk Management Scenarios for Teaching Information Security Management The Rise of #Cartels: Exploring the Organizational Operations and Messaging of Public Perception on Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1