V. Krishnamoorthy, Usha Nandini Duraisamy, Amruta S. Jondhale, Jaime Lloret, Balaji Venkatesalu Ramasamy
{"title":"Energy-Constrained Target Localization Scheme for Wireless Sensor Networks Using Radial Basis Function Neural Network","authors":"V. Krishnamoorthy, Usha Nandini Duraisamy, Amruta S. Jondhale, Jaime Lloret, Balaji Venkatesalu Ramasamy","doi":"10.1155/2023/1426430","DOIUrl":null,"url":null,"abstract":"The indoor object tracking by utilizing received signal strength indicator (RSSI) measurements with the help of wireless sensor network (WSN) is an interesting and important topic in the domain of location-based applications. Without the knowledge of location, the measurements obtained with WSN are of no use. The trilateration is a widely used technique to get location updates of target based on RSSI measurements from WSN. However, it suffers with high location estimation errors arising due to random variations in RSSI measurements. This paper presents a range-free radial basis function neural network (RBFN) and Kalman filtering- (KF-) based algorithm named RBFN+KF. The performance of the RBFN+KF algorithm is evaluated using simulated RSSIs and is compared against trilateration, multilayer perceptron (MLP), and RBFN-based estimations. The simulation results reveal that the proposed RBFN+KF algorithm shows very low location estimation errors compared to the rest of the three approaches. Additionally, it is also seen that RBFN-based approach is more energy efficient than trilateration and MLP-based localization approaches.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/1426430","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
The indoor object tracking by utilizing received signal strength indicator (RSSI) measurements with the help of wireless sensor network (WSN) is an interesting and important topic in the domain of location-based applications. Without the knowledge of location, the measurements obtained with WSN are of no use. The trilateration is a widely used technique to get location updates of target based on RSSI measurements from WSN. However, it suffers with high location estimation errors arising due to random variations in RSSI measurements. This paper presents a range-free radial basis function neural network (RBFN) and Kalman filtering- (KF-) based algorithm named RBFN+KF. The performance of the RBFN+KF algorithm is evaluated using simulated RSSIs and is compared against trilateration, multilayer perceptron (MLP), and RBFN-based estimations. The simulation results reveal that the proposed RBFN+KF algorithm shows very low location estimation errors compared to the rest of the three approaches. Additionally, it is also seen that RBFN-based approach is more energy efficient than trilateration and MLP-based localization approaches.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.