Cardiac MRI Segmentation Using Efficient ResNeXT-50-Based IEI Level Set and Anisotropic Sigmoid Diffusion Algorithms

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Image and Graphics Pub Date : 2022-12-15 DOI:10.1142/s0219467823400144
Anupama Bhan, Parthasarathi Mangipudi, Ayush Goyal
{"title":"Cardiac MRI Segmentation Using Efficient ResNeXT-50-Based IEI Level Set and Anisotropic Sigmoid Diffusion Algorithms","authors":"Anupama Bhan, Parthasarathi Mangipudi, Ayush Goyal","doi":"10.1142/s0219467823400144","DOIUrl":null,"url":null,"abstract":"Endocardial and epicardial border identification has been of extensive interest in cardiac Magnetic Resonance Images (MRIs). It is a difficult job to segment the epicardium and endocardium accurately and automatically from cardiac MRI owing to the cardiac tissues’ complexity even though the prevailing Deep Learning (DL) methodologies had attained significant success in medical imaging segmentation. Hence, by employing effectual ResNeXT-50-centric Inverse Edge Indicator Level Set (IEILS) and anisotropic sigmoid diffusion algorithms, this system has proposed cardiac MRI segmentation. The work has endured some function for an effectual partition of epicardium and endocardium. Initially, by employing the Truncated Kernel Function (TK)-Trilateral Filter, the noise removal function is executed on the input cardiac MRI. Next, by wielding the ResNeXT-50 IEILS, the Left and Right Ventricular (LV/RV) regions are segmented. The epicardium and endocardium are segmented by the ASD algorithm once the LV/RV is separated from the Left Ventricle (LV) region. Here, the openly accessible Sunnybrook and the Right Ventricle (RV) datasets are wielded. Then, the prevailing state-of-art algorithms are analogized to the outcomes achieved by the proposed framework. Regarding accuracy, sensitivity, and specificity, the proposed methodology executed the cardiac MRI segmentation process precisely along with the other surpassed state-of-the-art methodologies.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467823400144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Endocardial and epicardial border identification has been of extensive interest in cardiac Magnetic Resonance Images (MRIs). It is a difficult job to segment the epicardium and endocardium accurately and automatically from cardiac MRI owing to the cardiac tissues’ complexity even though the prevailing Deep Learning (DL) methodologies had attained significant success in medical imaging segmentation. Hence, by employing effectual ResNeXT-50-centric Inverse Edge Indicator Level Set (IEILS) and anisotropic sigmoid diffusion algorithms, this system has proposed cardiac MRI segmentation. The work has endured some function for an effectual partition of epicardium and endocardium. Initially, by employing the Truncated Kernel Function (TK)-Trilateral Filter, the noise removal function is executed on the input cardiac MRI. Next, by wielding the ResNeXT-50 IEILS, the Left and Right Ventricular (LV/RV) regions are segmented. The epicardium and endocardium are segmented by the ASD algorithm once the LV/RV is separated from the Left Ventricle (LV) region. Here, the openly accessible Sunnybrook and the Right Ventricle (RV) datasets are wielded. Then, the prevailing state-of-art algorithms are analogized to the outcomes achieved by the proposed framework. Regarding accuracy, sensitivity, and specificity, the proposed methodology executed the cardiac MRI segmentation process precisely along with the other surpassed state-of-the-art methodologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高效ResNeXT-50的IEI水平集和各向异性Sigmoid扩散算法的心脏MRI分割
心内膜和心外膜边界识别在心脏磁共振成像中引起了广泛的兴趣。由于心脏组织的复杂性,即使主流的深度学习(DL)方法在医学成像分割中取得了显著成功,但从心脏MRI中准确、自动地分割心外膜和心内膜仍然是一项困难的工作。因此,该系统采用有效的ResNeXT-50心室反向边缘指标水平集(IEILS)和各向异性S形扩散算法,提出了心脏MRI分割。这项工作对心外膜和心内膜的有效分隔具有一定的作用。最初,通过使用截断核函数(TK)-三边滤波器,在输入的心脏MRI上执行噪声去除功能。接下来,通过使用ResNeXT-50 IEILS,对左心室和右心室(LV/RV)区域进行分割。一旦LV/RV与左心室(LV)区域分离,就通过ASD算法对心外膜和心内膜进行分割。这里,使用了可公开访问的Sunnybrook和右心室(RV)数据集。然后,将现有技术的算法与所提出的框架所获得的结果进行类比。在准确性、敏感性和特异性方面,所提出的方法与其他超越最先进技术的方法一起精确地执行了心脏MRI分割过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
期刊最新文献
Design and Implementation of Novel Hybrid and Multiscale- Assisted CNN and ResNet Using Heuristic Advancement of Adaptive Deep Segmentation for Iris Recognition Dwarf Mongoose Optimization with Transfer Learning-Based Fish Behavior Classification Model MRCNet: Multi-Level Residual Connectivity Network for Image Classification Feature Matching-Based Undersea Panoramic Image Stitching in VR Animation Multi-disease Classification of Mango Tree Using Meta-heuristic-based Weighted Feature Selection and LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1