Electrochemical production of two-dimensional atomic layer materials and their application for energy storage devices

IF 6.1 Q2 CHEMISTRY, PHYSICAL Chemical physics reviews Pub Date : 2023-03-01 DOI:10.1063/5.0134834
Hoyoung Lee, Shikai Jin, Jiyong Chung, Minsu Kim, Seung Woo Lee
{"title":"Electrochemical production of two-dimensional atomic layer materials and their application for energy storage devices","authors":"Hoyoung Lee, Shikai Jin, Jiyong Chung, Minsu Kim, Seung Woo Lee","doi":"10.1063/5.0134834","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) atomic layer materials have attracted a great deal of attention due to their superior chemical, physical, and electronic properties, and have demonstrated excellent performance in various applications such as energy storage devices, catalysts, sensors, and transistors. Nevertheless, the cost-effective and large-scale production of high-quality 2D materials is critical for practical applications and progressive development in the industry. Electrochemical exfoliation is a recently introduced technique for the facile, environmentally friendly, fast, large-scale production of 2D materials. In this review, we summarize recent advances in different types of electrochemical exfoliation methods for efficiently preparing 2D materials, along with the characteristics of each method, and then introduce their applications as electrode materials for energy storage devices. Finally, the remaining challenges and prospects for developing the electrochemical exfoliation process of 2D materials for energy storage devices are discussed.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical physics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0134834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) atomic layer materials have attracted a great deal of attention due to their superior chemical, physical, and electronic properties, and have demonstrated excellent performance in various applications such as energy storage devices, catalysts, sensors, and transistors. Nevertheless, the cost-effective and large-scale production of high-quality 2D materials is critical for practical applications and progressive development in the industry. Electrochemical exfoliation is a recently introduced technique for the facile, environmentally friendly, fast, large-scale production of 2D materials. In this review, we summarize recent advances in different types of electrochemical exfoliation methods for efficiently preparing 2D materials, along with the characteristics of each method, and then introduce their applications as electrode materials for energy storage devices. Finally, the remaining challenges and prospects for developing the electrochemical exfoliation process of 2D materials for energy storage devices are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维原子层材料的电化学制备及其在储能器件中的应用
二维原子层材料因其优越的化学、物理和电子性能而受到广泛关注,在储能器件、催化剂、传感器和晶体管等方面表现出优异的性能。然而,高质量二维材料的成本效益和大规模生产对于实际应用和行业的逐步发展至关重要。电化学剥落是一种最近被引入的技术,用于方便、环保、快速、大规模地生产二维材料。本文综述了不同类型的电化学剥离方法在高效制备二维材料方面的最新进展,以及每种方法的特点,然后介绍了它们作为储能器件电极材料的应用。最后,讨论了二维储能材料电化学剥离工艺的发展面临的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rational engineering of semiconductor-based photoanodes for photoelectrochemical cathodic protection Effects of molecular assembly on heterogeneous interactions in electronic and photovoltaic devices Nanoscale and ultrafast in situ techniques to probe plasmon photocatalysis Raman scattering monitoring of thin film materials for atomic layer etching/deposition in the nano-semiconductor process integration Electron and ion behaviors at the graphene/metal interface during the acidic water electrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1