{"title":"The effect of tool wear on the damaged layer thickness and tool wear rate in ultra-precision turning of quartz glass","authors":"Yujie Liu, H. Tong, Yong Li, Jialong Chen","doi":"10.1088/1361-6439/acea8b","DOIUrl":null,"url":null,"abstract":"Quartz glasses have been extensively used for many fields, such as semiconductor technology, optical instruments, inertial navigation and others. Ultra-precision turning with diamond tools can achieve high surface accuracy when processing non-ferrous materials. In recent years, ultra-precision turning has also been tried to be applied to process brittle materials, but there are constraints including small removal amount and tool wear. When diamond tools are used to cut quartz glass, tool wear occurs under the combined action of thermal effect and mechanical friction, which will affect the damaged layer thickness of the processed quartz glass. In this paper, the tool wear factor is led into the calculation of the extrusion volume, and the damaged layer thickness is calculated by the extrusion volume. Combined with the results of quartz glass turning experiments and the calculated results by simulation, the effect of tool wear factor on the damaged layer thickness and the tool wear rate is analyzed. The analysis shows that tool wear will lead to chip fracture thickness decrease and extrusion volume increase. Combined action of these two aspects, the damage layer thickness keeps unchanged at first and then rises with the increase of tool wear. In addition, the experimental results show that the tool wear rate rises with the increase of tool wear.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/acea8b","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Quartz glasses have been extensively used for many fields, such as semiconductor technology, optical instruments, inertial navigation and others. Ultra-precision turning with diamond tools can achieve high surface accuracy when processing non-ferrous materials. In recent years, ultra-precision turning has also been tried to be applied to process brittle materials, but there are constraints including small removal amount and tool wear. When diamond tools are used to cut quartz glass, tool wear occurs under the combined action of thermal effect and mechanical friction, which will affect the damaged layer thickness of the processed quartz glass. In this paper, the tool wear factor is led into the calculation of the extrusion volume, and the damaged layer thickness is calculated by the extrusion volume. Combined with the results of quartz glass turning experiments and the calculated results by simulation, the effect of tool wear factor on the damaged layer thickness and the tool wear rate is analyzed. The analysis shows that tool wear will lead to chip fracture thickness decrease and extrusion volume increase. Combined action of these two aspects, the damage layer thickness keeps unchanged at first and then rises with the increase of tool wear. In addition, the experimental results show that the tool wear rate rises with the increase of tool wear.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.