Ordinal Approaches to Decomposing Between-Group Test Score Disparities

IF 1.9 3区 心理学 Q2 EDUCATION & EDUCATIONAL RESEARCH Journal of Educational and Behavioral Statistics Pub Date : 2020-11-11 DOI:10.3102/1076998620967726
David M. Quinn, Andrew D. Ho
{"title":"Ordinal Approaches to Decomposing Between-Group Test Score Disparities","authors":"David M. Quinn, Andrew D. Ho","doi":"10.3102/1076998620967726","DOIUrl":null,"url":null,"abstract":"The estimation of test score “gaps” and gap trends plays an important role in monitoring educational inequality. Researchers decompose gaps and gap changes into within- and between-school portions to generate evidence on the role schools play in shaping these inequalities. However, existing decomposition methods assume an equal-interval test scale and are a poor fit to coarsened data such as proficiency categories. This leaves many potential data sources ill-suited for decomposition applications. We develop two decomposition approaches that overcome these limitations: an extension of V, an ordinal gap statistic, and an extension of ordered probit models. Simulations show V decompositions have negligible bias with small within-school samples. Ordered probit decompositions have negligible bias with large within-school samples but more serious bias with small within-school samples. More broadly, our methods enable analysts to (1) decompose the difference between two groups on any ordinal outcome into portions within- and between some third categorical variable and (2) estimate scale-invariant between-group differences that adjust for a categorical covariate.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"46 1","pages":"466 - 500"},"PeriodicalIF":1.9000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3102/1076998620967726","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/1076998620967726","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

The estimation of test score “gaps” and gap trends plays an important role in monitoring educational inequality. Researchers decompose gaps and gap changes into within- and between-school portions to generate evidence on the role schools play in shaping these inequalities. However, existing decomposition methods assume an equal-interval test scale and are a poor fit to coarsened data such as proficiency categories. This leaves many potential data sources ill-suited for decomposition applications. We develop two decomposition approaches that overcome these limitations: an extension of V, an ordinal gap statistic, and an extension of ordered probit models. Simulations show V decompositions have negligible bias with small within-school samples. Ordered probit decompositions have negligible bias with large within-school samples but more serious bias with small within-school samples. More broadly, our methods enable analysts to (1) decompose the difference between two groups on any ordinal outcome into portions within- and between some third categorical variable and (2) estimate scale-invariant between-group differences that adjust for a categorical covariate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分解组间测试成绩差异的顺序方法
对考试成绩“差距”和差距趋势的估计在监测教育不平等方面发挥着重要作用。研究人员将差距和差距变化分解为学校内部和学校之间的部分,以产生关于学校在形成这些不平等方面所起作用的证据。然而,现有的分解方法假设了等间隔测试规模,并且不太适合粗糙化的数据,如熟练程度类别。这使得许多潜在的数据源不适合分解应用程序。我们开发了两种克服这些限制的分解方法:V的扩展、有序间隙统计量和有序probit模型的扩展。模拟结果表明,V分解在学校样本较小的情况下具有可忽略的偏差。有序probit分解对于大的校内样本具有可忽略的偏差,但是对于小的校内样本则具有更严重的偏差。更广泛地说,我们的方法使分析师能够(1)将两组之间在任何有序结果上的差异分解为第三分类变量内和之间的部分,以及(2)估计调整分类协变量的组间差异的尺度不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
4.20%
发文量
21
期刊介绍: Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.
期刊最新文献
Improving Balance in Educational Measurement: A Legacy of E. F. Lindquist A Simple Technique Assessing Ordinal and Disordinal Interaction Effects A Comparison of Latent Semantic Analysis and Latent Dirichlet Allocation in Educational Measurement Sample Size Calculation and Optimal Design for Multivariate Regression-Based Norming Corrigendum to Power Approximations for Overall Average Effects in Meta-Analysis With Dependent Effect Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1