{"title":"Nucleonic Direct Urca Processes and Cooling of the Massive Neutron Star by Antikaon Condensations","authors":"Yan Xu, W. Ding, Cheng-zhi Liu, J. Han","doi":"10.1155/2020/6146913","DOIUrl":null,"url":null,"abstract":"Nucleonic direct Urca processes and cooling of the massive neutron stars are studied by considering antikaon condensations. Calculations are performed in the relativistic mean field and isothermal interior approximations. Neutrino energy losses of the nucleonic direct Urca processes are reduced when the optical potential of antikaons changes from to MeV. If the center density of the massive neutron stars is a constant, the masses taper off with the optical potential of antikaons, and neutrino luminosities of the nucleonic direct Urca processes decrease for but first increase and then decrease for larger . Large optical potential of antikaons results in warming of the nonsuperfluid massive neutron stars. Massive neutron stars turn warmer with the protonic superfluids. However, the decline of the critical temperatures of the protonic superfluids for the large optical potential of antikaons can speed up the cooling of the massive neutron stars.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":"2020 1","pages":"6146913"},"PeriodicalIF":1.6000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/6146913","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2020/6146913","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleonic direct Urca processes and cooling of the massive neutron stars are studied by considering antikaon condensations. Calculations are performed in the relativistic mean field and isothermal interior approximations. Neutrino energy losses of the nucleonic direct Urca processes are reduced when the optical potential of antikaons changes from to MeV. If the center density of the massive neutron stars is a constant, the masses taper off with the optical potential of antikaons, and neutrino luminosities of the nucleonic direct Urca processes decrease for but first increase and then decrease for larger . Large optical potential of antikaons results in warming of the nonsuperfluid massive neutron stars. Massive neutron stars turn warmer with the protonic superfluids. However, the decline of the critical temperatures of the protonic superfluids for the large optical potential of antikaons can speed up the cooling of the massive neutron stars.
期刊介绍:
Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.