Chicken swarm optimisation based clustering of biomedical documents and health records to improve telemedicine applications

Q3 Business, Management and Accounting International Journal of Enterprise Network Management Pub Date : 2019-10-17 DOI:10.1504/ijenm.2019.10024736
M. Sundarambal, Raman Sandhiya
{"title":"Chicken swarm optimisation based clustering of biomedical documents and health records to improve telemedicine applications","authors":"M. Sundarambal, Raman Sandhiya","doi":"10.1504/ijenm.2019.10024736","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to develop an efficient ontology enabled chicken swarm optimisation (CSO) based clustering algorithm with dynamic dimension reduction (DDR) to efficiently cluster biomedical documents and health records to facilitate telemedicine applications. A total of 350 documents and health records are collected from PubMed repository for telemedicine applications. First, the documents are pre-processed via semantic annotation and concept mapping while term frequency and inverse gravity moment (TF-IGM) factor is used to improve document representation and the modified n-gram resolves the substitution and deletion malpractices. DDR technique reduces feature space dimension and prunes non-useful text features to increase the clustering accuracy by tackling the high dimensionality problem. Finally, the clusters are formed by CSO clustering. Experimental simulations prove that the CSO-DDR clustering model is significantly efficient than the traditional algorithms and ensures reliable and adaptive telemedicine applications with better clustering of biomedical documents and health records.","PeriodicalId":39284,"journal":{"name":"International Journal of Enterprise Network Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Network Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijenm.2019.10024736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to develop an efficient ontology enabled chicken swarm optimisation (CSO) based clustering algorithm with dynamic dimension reduction (DDR) to efficiently cluster biomedical documents and health records to facilitate telemedicine applications. A total of 350 documents and health records are collected from PubMed repository for telemedicine applications. First, the documents are pre-processed via semantic annotation and concept mapping while term frequency and inverse gravity moment (TF-IGM) factor is used to improve document representation and the modified n-gram resolves the substitution and deletion malpractices. DDR technique reduces feature space dimension and prunes non-useful text features to increase the clustering accuracy by tackling the high dimensionality problem. Finally, the clusters are formed by CSO clustering. Experimental simulations prove that the CSO-DDR clustering model is significantly efficient than the traditional algorithms and ensures reliable and adaptive telemedicine applications with better clustering of biomedical documents and health records.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生物医学文档和健康记录聚类的鸡群优化改进远程医疗应用
本文的目的是开发一种高效的基于本体的鸡群优化(CSO)聚类算法,该算法具有动态降维(DDR)功能,可以有效地对生物医学文档和健康记录进行聚类,以促进远程医疗应用。从PubMed存储库中总共收集了350份用于远程医疗应用的文件和健康记录。首先,通过语义标注和概念映射对文档进行预处理,同时使用术语频率和反重力矩因子来改进文档表示,修改后的n-gram解决了替换和删除的弊端。DDR技术通过降低特征空间维数和修剪无用的文本特征来解决高维问题,从而提高聚类精度。最后,通过CSO聚类形成聚类。实验仿真证明,CSO-DR聚类模型比传统算法具有显著的效率,并通过更好的生物医学文档和健康记录聚类确保了可靠和自适应的远程医疗应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Enterprise Network Management
International Journal of Enterprise Network Management Business, Management and Accounting-Management of Technology and Innovation
CiteScore
0.90
自引率
0.00%
发文量
28
期刊最新文献
Multi-tier firm-level analysis of global auto supply chain: centrality and financial performance Development of coating material for low carbon steels using MCDM Multi-objective optimisation of wear process parameters of 413/fly ash composites using grey relational analysis Fashion market segmentation using Facebook: an empirical approach Development of coating material for low carbon steels using MCDM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1