{"title":"Restoration of Lake Okeechobee, Florida: mission impossible?","authors":"D. Canfield, R. Bachmann, M. Hoyer","doi":"10.1080/10402381.2020.1839607","DOIUrl":null,"url":null,"abstract":"Abstract Canfield DE Jr, Bachmann RW, Hoyer MV. 2020. Restoration of Lake Okeechobee, Florida: mission impossible? Lake Reserv Manage. XX:XXX–XXX. Legally mandated eutrophication restoration goals for Lake Okeechobee (FL) are unachievable, therefore assigning managers a “mission impossible.” Since the 1970s, restoration efforts have focused on reducing pelagic total phosphorus (TP) to ∼40 µg/L. A total daily maximum load (TMDL) of 140 metric tons (t)/yr was adopted by the Florida Department of Environmental Protection in 1999 (effective date 2015) to restore the lake’s balance of flora and fauna. Phosphorus (P) loads (1975–2018) averaged 516 t/yr with no significant change over time, yet average TP significantly increased from 51 µg/L (1974–1977) to 146 µg/L (2015–2019). Greater TP values in 2019 were due to Hurricane Irma and an early June storm event. Annual P-loads and pelagic TP were not significantly correlated. Instead, TP was strongly correlated with turbidity (R 2 = 0.85), which is generated by wave-driven resuspension of P-rich unconsolidated sediments. Since 1973, >13,000 t of TP has been added to Okeechobee’s sediments that have accumulated over the past century due to the lowering of water levels and the construction of the Herbert Hoover Dike. Prior to settlement, high water levels allowed turbid lake waters to flood large areas of adjacent wetlands, where suspended sediments were removed from the lake. With the minimization of this self-cleansing mechanism after construction of the Herbert Hoover Dike, P-rich fine sediments accumulated, and periodic hurricanes disrupted consolidated sediments. Unconsolidated sediments are easily resuspended into the water column, raising TP. Efforts to reduce Okeechobee’s pelagic TP through reductions of P-loads alone will not work due to sediment accumulation and resuspension.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10402381.2020.1839607","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10402381.2020.1839607","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15
Abstract
Abstract Canfield DE Jr, Bachmann RW, Hoyer MV. 2020. Restoration of Lake Okeechobee, Florida: mission impossible? Lake Reserv Manage. XX:XXX–XXX. Legally mandated eutrophication restoration goals for Lake Okeechobee (FL) are unachievable, therefore assigning managers a “mission impossible.” Since the 1970s, restoration efforts have focused on reducing pelagic total phosphorus (TP) to ∼40 µg/L. A total daily maximum load (TMDL) of 140 metric tons (t)/yr was adopted by the Florida Department of Environmental Protection in 1999 (effective date 2015) to restore the lake’s balance of flora and fauna. Phosphorus (P) loads (1975–2018) averaged 516 t/yr with no significant change over time, yet average TP significantly increased from 51 µg/L (1974–1977) to 146 µg/L (2015–2019). Greater TP values in 2019 were due to Hurricane Irma and an early June storm event. Annual P-loads and pelagic TP were not significantly correlated. Instead, TP was strongly correlated with turbidity (R 2 = 0.85), which is generated by wave-driven resuspension of P-rich unconsolidated sediments. Since 1973, >13,000 t of TP has been added to Okeechobee’s sediments that have accumulated over the past century due to the lowering of water levels and the construction of the Herbert Hoover Dike. Prior to settlement, high water levels allowed turbid lake waters to flood large areas of adjacent wetlands, where suspended sediments were removed from the lake. With the minimization of this self-cleansing mechanism after construction of the Herbert Hoover Dike, P-rich fine sediments accumulated, and periodic hurricanes disrupted consolidated sediments. Unconsolidated sediments are easily resuspended into the water column, raising TP. Efforts to reduce Okeechobee’s pelagic TP through reductions of P-loads alone will not work due to sediment accumulation and resuspension.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.