{"title":"Restoration of Lake Okeechobee, Florida: mission impossible?","authors":"D. Canfield, R. Bachmann, M. Hoyer","doi":"10.1080/10402381.2020.1839607","DOIUrl":null,"url":null,"abstract":"Abstract Canfield DE Jr, Bachmann RW, Hoyer MV. 2020. Restoration of Lake Okeechobee, Florida: mission impossible? Lake Reserv Manage. XX:XXX–XXX. Legally mandated eutrophication restoration goals for Lake Okeechobee (FL) are unachievable, therefore assigning managers a “mission impossible.” Since the 1970s, restoration efforts have focused on reducing pelagic total phosphorus (TP) to ∼40 µg/L. A total daily maximum load (TMDL) of 140 metric tons (t)/yr was adopted by the Florida Department of Environmental Protection in 1999 (effective date 2015) to restore the lake’s balance of flora and fauna. Phosphorus (P) loads (1975–2018) averaged 516 t/yr with no significant change over time, yet average TP significantly increased from 51 µg/L (1974–1977) to 146 µg/L (2015–2019). Greater TP values in 2019 were due to Hurricane Irma and an early June storm event. Annual P-loads and pelagic TP were not significantly correlated. Instead, TP was strongly correlated with turbidity (R 2 = 0.85), which is generated by wave-driven resuspension of P-rich unconsolidated sediments. Since 1973, >13,000 t of TP has been added to Okeechobee’s sediments that have accumulated over the past century due to the lowering of water levels and the construction of the Herbert Hoover Dike. Prior to settlement, high water levels allowed turbid lake waters to flood large areas of adjacent wetlands, where suspended sediments were removed from the lake. With the minimization of this self-cleansing mechanism after construction of the Herbert Hoover Dike, P-rich fine sediments accumulated, and periodic hurricanes disrupted consolidated sediments. Unconsolidated sediments are easily resuspended into the water column, raising TP. Efforts to reduce Okeechobee’s pelagic TP through reductions of P-loads alone will not work due to sediment accumulation and resuspension.","PeriodicalId":18017,"journal":{"name":"Lake and Reservoir Management","volume":"37 1","pages":"95 - 111"},"PeriodicalIF":1.1000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10402381.2020.1839607","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lake and Reservoir Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10402381.2020.1839607","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 15
Abstract
Abstract Canfield DE Jr, Bachmann RW, Hoyer MV. 2020. Restoration of Lake Okeechobee, Florida: mission impossible? Lake Reserv Manage. XX:XXX–XXX. Legally mandated eutrophication restoration goals for Lake Okeechobee (FL) are unachievable, therefore assigning managers a “mission impossible.” Since the 1970s, restoration efforts have focused on reducing pelagic total phosphorus (TP) to ∼40 µg/L. A total daily maximum load (TMDL) of 140 metric tons (t)/yr was adopted by the Florida Department of Environmental Protection in 1999 (effective date 2015) to restore the lake’s balance of flora and fauna. Phosphorus (P) loads (1975–2018) averaged 516 t/yr with no significant change over time, yet average TP significantly increased from 51 µg/L (1974–1977) to 146 µg/L (2015–2019). Greater TP values in 2019 were due to Hurricane Irma and an early June storm event. Annual P-loads and pelagic TP were not significantly correlated. Instead, TP was strongly correlated with turbidity (R 2 = 0.85), which is generated by wave-driven resuspension of P-rich unconsolidated sediments. Since 1973, >13,000 t of TP has been added to Okeechobee’s sediments that have accumulated over the past century due to the lowering of water levels and the construction of the Herbert Hoover Dike. Prior to settlement, high water levels allowed turbid lake waters to flood large areas of adjacent wetlands, where suspended sediments were removed from the lake. With the minimization of this self-cleansing mechanism after construction of the Herbert Hoover Dike, P-rich fine sediments accumulated, and periodic hurricanes disrupted consolidated sediments. Unconsolidated sediments are easily resuspended into the water column, raising TP. Efforts to reduce Okeechobee’s pelagic TP through reductions of P-loads alone will not work due to sediment accumulation and resuspension.
期刊介绍:
Lake and Reservoir Management (LRM) publishes original, previously unpublished studies relevant to lake and reservoir management. Papers address the management of lakes and reservoirs, their watersheds and tributaries, along with the limnology and ecology needed for sound management of these systems. Case studies that advance the science of lake management or confirm important management concepts are appropriate as long as there is clearly described management significance. Papers on economic, social, regulatory and policy aspects of lake management are also welcome with appropriate supporting data and management implications. Literature syntheses and papers developing a conceptual foundation of lake and watershed ecology will be considered for publication, but there needs to be clear emphasis on management implications. Modeling papers will be considered where the model is properly verified but it is also highly preferable that management based on the model has been taken and results have been documented. Application of known models to yet another system without a clear advance in resultant management are unlikely to be accepted. Shorter notes that convey important early results of long-term studies or provide data relating to causative agents or management approaches that warrant further study are acceptable even if the story is not yet complete. All submissions are subject to peer review to assure relevance and reliability for management application.